Th
Pr ematic
Ogramimers

Learn to Program
with Minecraft Plugins

Create Flaming Cows in Java
Using CanaryMod

Praise for This Book

A handful of boilerplate and about five lines of custom code, and suddenly, explod-
ing arrows! All of a sudden, doing something cool in the context of a fully realized
3D game engine is very easy. And that’s how programming has to be learned...in
easy, bite-sized chunks.

» Carl Cravens
Linux system architect and Minecraft dad

Learn to Program with Minecraft Plugins explains things very well—no programming
experience required. It's very helpful for new programmers. And so far, it’s been
an excellent vehicle for some quality father-son bonding.

>» Mel Riffe, Minecraft dad, and Noah Riffe, age 12

Phenomenal. Approachable and simple, without talking down to the audience. I
could see anyone at any age reading this.

» David Bock, age 44

Well, first off, this is a wonderful book. The way it is written is amazing. I am
learning BASH and Java! I've tried to learn BASH, but all the other books I've
found are just way too hard. Not only that, but modding Minecraft while running
a server? EPIC! Thank you for writing this book!

» Jack H. Age 13

I really liked making the server plugins. My favorite was the cow shooter.

» Jonathan Knowles, age 13

Go, you—this book is awesome!

» Stina Qvarnstrom
Developer, Bool Noride AB, Sweden

Sssssssssss

>» A creeper

Learn to Program with
Minecraft Plugins,
2"¢ Edition

Create Flaming Cows in Java
Using CanaryMod

Andy Hunt

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)

Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)

Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-94-2

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2014

http://pragprog.com
rights@pragprog.com

Contents

Acknowledgments e b 4

Xi

13
13

15
15
18
20
22
23
29

31
33
35
36
39
42

43
44
46
52
54
60

Contents ® vi

Use an if Statement to Make Decisions 61
62
64
65

67
67
69
70
75
77

79
79
80
81
82
84
84
87

89
89
92
94
96
98
101
102

105
105
108
109
115

117
117
118
123
Spawn Entities 124

Plugin: FlyingCreeper 125

10.

12.

Listen for Events

Contents ® vii

126
128
133
134

135
135
137
138
139
140
140
143

145
146
149
151
154
158
167

169
169
170
173
177
180
183
184

187
188
188
190
193
201
209

211
211
216

A2,

A4.

How to Read the Canary Documentation

Contents ® viii

217
217
218
219

221
221
223

229
229
230
232
237
238
239
240
240

241
241

247

253

255

257

Acknowledgments

A very special thanks to my son Stuart for suggesting this book and answering
a lot of my dumb questions about Minecraft, and to the rest of my family for
putting up with me as I disappeared under headphones and typed away in
an imaginary world.

Thanks to my editor Brian Hogan, managing editor Susannah Pfalzer, and
production manager Janet Furlow, and everyone at the Pragmatic Bookshelf
for helping to get this second edition finished in record time.

Thanks to second edition tech reviewers, including Said Eloudrhiri, Ingo
Haumann, Jack H., Dan Kacenjar, Andrés N. Robalino, and Zachary Thomas.
Extra special thanks to Joshua McKinnon for his detailed and thoughtful
review.

Special thanks to the crew at CanaryMod, especially Jason Jones, for their
support.

Minecraft is ®, TM, and © 2009-2014 Mojang/Notch.

CanaryMod is Copyright 2012-2014, CanaryMod Team, Under the management of PlayBlack
and Visual Illusions Entertainment. All rights reserved. CanaryMod Team, PlayBlack,
Visual Illusions Entertainment, CanaryLib, CanaryMod, and its contributors are NOT
affiliated with, endorsed, or sponsored by Mojang AB, makers of Minecraft. The “CanaryMod”
name is used with permission from FallenMoonNetwork. Photo of a toggle switch by Jason
Zack at en.wikipedia

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Start Here

Welcome!

Thanks for taking the time to pick up this book. I hope you’ll find it a quick
read and have a lot of fun along the way. If you've never written a program
before, don’t worry. We'll take it slow and start at the very beginning. No
experience required.

Everyone loves Minecraft. I think a big reason for its success is that you get
to participate in making the game. You get a chance to build; to create.
Whether it’s a quick shelter in survival mode or a huge Redstone simulation
or your very own castle, you get to create.

But sometimes the Minecraft game’s built-in capabilities aren’t enough. You
want to do something more. You want to shoot flaming cows or encase an
opponent in a cage of solid rock. For these and many other extra abilities,
you need to add features to the game itself.

Applications on your computer or phone are written in a special kind of text
we call programming languages. They're not as huge or hard to learn as nat-
ural languages, such as English or Spanish or Chinese, but they are different
from the language you use to write and talk in every day.

There are many, many programming languages in use today. Some are very
popular and not very powerful. Some are used only by a handful of people
but are incredibly powerful and difficult to master.

Minecraft is written in the Java programming language. Java is moderately
powerful, but it also has some hard and confusing parts. We’ll focus on the
basics and sidestep the difficult stuff.

This is a fast-and-loose book to get you programming in Java quickly. You'll
learn enough of the Java programming language to create your own Minecraft
plugins and accomplish common tasks in Java.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Start Here ® xii

We'll take a look at setting up your own Minecraft server, keeping cloud-based
backups of the code you write, and we’ll take a peek at a few advanced coding
techniques.

Who This Book Is For

This book is aimed at readers who have no experience programming, but who
do have some experience playing Minecraft. If you aren’t familiar with
Minecraft, there are plenty of videos and books to help you get started. But
I'm guessing you're already pretty adept at and enthusiastic about Minecraft,
and you want to learn the programming end.

Readers younger than 8 or 9, or readers of any age who are having trouble
understanding programming in Java, might want to take a short detour and
experiment with a friendlier programming language first. Scratch and the
newer version, Snap!,"” are great little languages that help you learn the basic
concepts of programming. They show how programming elements fit together
visually. Once you get the hang of that, then coming back to a text-based
language like Java can make a lot more sense.

Otherwise, you just need a modern computer running Windows, Mac OS X,
or Linux, and we’ll go from there.

Getting Started

Minecraft is designed as a “client-server” application. That means it’s split
into two parts.

First, there’s the client, which is the application you run on your desktop or
laptop computer. The client renders images of the Minecraft world and accepts
your commands to move and act in the game.

Second, there’s the server, which keeps track of everything in the game,
including all the players who are connected, their inventories, what they’ve
built, where they are, and so on. Most of the time the server is running on
some faraway machine in another part of the country. But it could be running
on your laptop or desktop computer as well.

The client and the server talk to each over the network, the same way you use
a web browser to connect to servers and play games or see pictures of cats.

1. http://scratch.mit.edu

2. http://snap.berkeley.edu

http://scratch.mit.edu
http://snap.berkeley.edu
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Swimming in the Deep End * xiii

To add or change functionality in the Minecraft game, you have to add to or
change the Java program on the server. That's what you'll learn to do in this
short book: program in Java by writing Java instructions (which we call “source
code,” or just “code” or the “program”) to create plugins for the Minecraft server.
A plugin is just a piece of code that you add to an existing program.®

Before we get started with plugins, you need to set up a local Minecraft server
for testing, and install the Java programming language and a couple of other
applications. We'll go over all of that in the first few chapters. Installing stuff
isn’t very much fun by itself. In fact, it’s boring as dirt. But we’ll try to get
through the dirt pile as fast as we can.

In fact, to help you keep track of your progress, a “Your Growing Toolbox”
sidebar at the end of each chapter shows a progress bar. You'll start from
just plain dirt:

And finish up with 100% grass:

Some chapters will go faster than others and some will add more than others,
but you will keep making progress.

Swimming in the Deep End

Because we’ve got a lot to cover in a small space, I'm going to try to show you
things first, maybe even use them first, and then explain them in detail a little
later. Sometimes that can feel like you've been thrown into the deep end of
the pool. When you see something that doesn’t make sense yet, don’'t worry
about it. Just let it wash over you; the explanation will be along shortly.

In many cases, you can use something successfully even if you don’t really
understand how it all works. I can turn a desk lamp on and use it without
understanding how electricity is generated. I could even build my own desk
lamp without understanding how to build a big power-station generator. I
just need to know how my part fits in.

We'll focus on how your part fits in as much as possible.

3. Some folks also write Minecraft mods, which take place in the graphical client, but we
won't cover those here.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Start Here ® xiv

Getting Help

There’s a forum on the book’s website for questions, updates, and tips. Just

tab.

On that same home page, there’s a link for Source Code where you can download
all the source code from this book.*

Please download that to your Desktop now—you’ll use your computer’s Desktop
for most of our work, but more on that in a bit. Meanwhile, start downloading.

I'll wait.

The download is an archive file created using zip, so you need to unzip it on
your Desktop. You can use unzip from the command line (for Mac OS X or
Linux), or for Windows you can use WinZip or the free 7-Zip.’

Got it unpacked? Great!

As we go along, you’'ll learn how to use new tools and learn new ways to use
those tools. We'll keep track of the new stuff you learn with that “toolbox” at
the end of each chapter. By the end of the book you’ll have enough in your
toolbox that you’'ll be able to design and code your own plugins from scratch!

Conventions
Code or commands that I'm showing you as examples look like this:
$ I've typed all of this as an example for you.

For code or commands that you're supposed to type in, I'll show it with a
shaded background like this:

$ you type this part here (but not the dollar-sign prompt)

Things in italics are placeholders; you don’t type them in directly, so something
like this:

me.chat(string msg);
means you would replace the italic part, like this:
me.chat("Creepers are coming.");

Now let’s see how to work this thing.

4. The exact link is https://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip.

5. Available from http://www.winzip.com or http://www.7-zip.org

https://pragprog.com/book/ahmine2
https://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://www.winzip.com
http://www.7-zip.org
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter you'll learn about the shell, where you can type com-
mands to your computer. You'll add these topics to your mental toolbox:

+ How to open a command shell and type commands
» How files and directories make up the file system
» How to navigate around directories in the file system

CHAPTER 1

Command Your Computer

One of the earliest and greatest computer games that created a world for you
to explore was Colossal Cave Adventure,' way back in 1976. It was a purely
text-based adventure—there were no images or graphics. You typed instruc-
tions to the game using simple sentences, commanding it to “go north” or
“take axe” or “kKill troll” as needed. And it did as you asked, even killing the
troll with your bare hands.

Today, text commands are still in games—even Minecraft has text commands.
You've probably typed commands in Minecraft's chat window using a “/”
character.

You're going to issue commands to your computer to build plugins and work
with files in very much the same way, using the command line.

The command line is a powerful tool that lets you work on your local computer
as well as on distant computers in the cloud. In fact, we’ll cover how to do
exactly that later on in the book, in Appendix 4, How to Install a Cloud Server,
opage 220, e

You can even use the command-line processor to write programs; it contains
a full programming language by itself, separate from Java. I've done a little
of that for you, with a script (an executable list of commands) that helps you
build and install plugins. We'll use that as we go along.

If you're already familiar with using the command line, feel free to skip to the
end of this chapter on page 12.

1. http://en.wikipedia.org/wiki/Colossal Cave Adventure

http://en.wikipedia.org/wiki/Colossal_Cave_Adventure
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer ® 2

Use the Command Line

The command line looks something like this on my computer. Yours may use
different colors and fonts, and you can usually set these to your liking. I
apparently prefer black letters on a tan background:

8no Terminal — bash — 80x24

Last login: Thu Sep 19 17:04:45 on ttys003
~s 1

oj

You access the command line a little differently depending on the kind of
operating system you're running, which will be one of these:

Windows comes with a very bare-bones command line. You get to it by running
cmd.exe. If your version of Windows has a “Start” command, then you might
be able to select Start -> Run and enter cmd.exe or just use the search box
that comes up to find and run cmd.exe. But I don’t recommend using cmd.exe
by itself; see the instructions in the box on page 4.

On Mac OS X, open the command line via Applications -> Utilities -> Terminal.

If you're running Linux, you likely already know how to get to a command-line
shell. But for the sake of completeness, and because it’s called different things,
try any of these: open a shell, start a Konsole, or right-click on the Desktop to
open a Terminal.

(Fortunately, all of these pesky differences between Windows, Mac, and Linux
disappear once you're writing Java code: Java runs the same on each platform.)

Once you have your command-line application up and running, you're ready
to type commands into the command-line processor, or shell, as I'll call it.
You'll be using a few simple commands that I'll show you as we go along.

Each shell prints out a short message indicating it’s ready for you to type
something in. But instead of a straightforward prompt like “Ready for you to
type, master,” most command prompts are a little more cryptic.

Windows will show something like C:\>. Linux and Mac systems might show
$ or %. Any of these prompts might include additional information, like your
name, the computer’s name, or a directory name. Since that will be different
for everyone, I'm going to choose the simplest one for the examples in this
book and show the command prompt as a $. Whatever your prompt looks
like, that’s where you type in commands.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Move Around in File Directories ® 3

DO NOT TYPE IN THE DOLLAR SIGN ($). I'll show it to indicate where you
type, but you don’t type the $:

$ you type this part here, but not the dollar sign

When you're done typing in a command and want the computer to run it,
press the Enter (or Return) key on your keyboard. That's the easy part. Next
you just need to learn a few basic commands to type in!

You can list the files and directories with the directory listing command:
$ 1s

To change your current directory, you use the change directory command.
For example, to change the directory to the Desktop, you'd type

$ cd Desktop
and be transported to the Desktop (or any other directory whose name you enter).

For instance, when your shell first opens up, you’ll be in some sort of default
directory or folder (sometimes called a home directory). You can see what files
are there by typing the command Is (short for “list files”) and pressing Return.
(On stock Windows using cmd.exe, you'd have to type dir (short for “directory
listing”) instead. Also, while the rest of the world uses a “/” in directory names,
Windows uses a “\.” These and other tiresome differences are why I recom-
mend using the POSIX-standard bash shell for Windows as described in the
box on page 4.)

You'll see a listing of a bunch of files. Type cd Desktop, and you’ll be in your
Desktop directory. Type the command Is, and you’ll see a list of all the files
on the Desktop. Now you're working at the command line! Let’s delve into
that a little bit more.

Move Around in File Directories

Normally when you want to look at files on your computer’s hard drive, you
use graphical programs like Explorer on Windows or the Finder on Mac. Either
way, the idea is to show you the files, folders/directories, and applications/pro-
grams on the computer so you can navigate around and run things.

We're doing the same thing here, but in a more powerful way and without
graphics. If you're already familiar with doing this, please feel free to skip to
the end of this chapter for a small treat. Otherwise, read on.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer ® 4

Install BusyBox on Windows

The Mac OS X and Linux environments are based on Unix, which has a very rich
command-line environment, including a full-featured shell. There’s a published
standard for that environment, called POSIX, which includes commands and language
features. The POSIX standard shell is really an entire programming language by itself,
and you can write shell scripts to do basic tasks on the computer for you.

Windows, however, isn’t as sophisticated. The default command processor doesn’t
do much at all, the commands have different names, and directory and file names
are specified differently.

So in order to keep things consistent for everybody, I recommend that Windows users
download BusyBox. It installs a more professional, POSIX-compliant standard shell
and common commands—the same ones that Mac OS X, Linux, and the rest of the
world uses.

To install the command shell and basic commands for Windows, download this file

Once it’s downloaded to your Desktop, rename the file from busybox.exe to sh.exe. Then
open a cmd.exe window and type this:

C:\> cd Desktop
C:\> C:\Windows\system32\cmd.exe /c sh.exe -1

Now you'll see a new shell with a dollar-sign prompt. That’s where we’ll run commands
and do our work. Notice an important detail: this is running sh.exe with a -| flag (which
you would pronounce as “minus ell”), which tells it to act like a “login shell” where
you can type commands.

For convenience’s sake, you can make a batch file on your Desktop to launch this
command shell for you. To do that, create a text file and save it to your Desktop.
Name the file shell.bat and type this line of text in the file:

C:\Windows\system32\cmd.exe /c sh.exe -1

Save the file, and now you can double-click on shell.bat, and you’ll have a POSIX-
compatible shell. With that done, you can access the commands we’ll use (things like
Is, mv, cp, and pwd), and you’ll specify directory names with “/” instead of the Windows
“\” character, so everything will work the same on Windows as on Mac and Linux.

You'll also be able to employ the command scripts that we’ll use to build and install
plugins.

tion on BusyBox for Windows.

ftp://ftp.tigress.co.uk/public/gpl/6.0.0/busybox/busybox.exe
http://intgat.tigress.co.uk/rmy/busybox/index.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Move Around in File Directories ® 5

The collection of files and folders on your computer is called the file system.
At any point in time a Finder (or Explorer) window on your Desktop or in your
command shell is sitting in some current directory. On your Desktop you
might have several folder windows open, each looking at a different folder
(directory) on your disk.

Each command-line shell window you have open works the same way: for
each window, there is a current directory. Some systems are set up to show
the current directory in your prompt. But you can always find out where you
are by typing the command pwd (which stands for “print working directory”):

$ pwd
/Users/andy/Desktop

Try this now: open a fresh shell, and before doing anything else, type pwd at
the prompt (shown here as a $—yours may be different):

$ pwd

That will print out your home directory, which is where every one of your
shells will start from.

In each shell, all the commands you run will run with this particular idea of
a current directory (or current working directory). Many programs you use
will look here, in the current directory, to run, open, and save files.

If you haven’t yet, download to the Desktop the files that came with this book,>
and unzip the archive there.’ That will unpack to a directory named code,
which contains all the examples from this book.

Under code there are a bunch of plugin directories, one for each plugin in this
book. We'll start off looking at the HelloWorld plugin files. Under that directory
are a few other files and subdirectories.

The diagrams on the next page show how you can navigate through these
directories.

2. http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip

3. Use unzip at the command line, or on Windows use WinZip or 7-Zip.

http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer ¢ 6

Start with this:

$ cd Desktop h Desktop/

And you'll be here:

build.sh bin/ (Canary.inf) (dist/) src/
] i
I |
|

Next go down into the
code directory by typing

o -
code/
$ cd code |

Now you're here: HelloWorld/

build.sh bin/ <Canary.inf> (dist/) src/
] |
I '
|

report erratum -

discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Move Around in File Directories ® 7

Go down into HelloWorld:

$ cd HelloWorld

And now you're here:
-

B |

build.sh (Canary.inf) (dist/)
T T
' ' '
I ' '
|

helloworld/ (HelloWorId.jar) (helloworld/)
T |
| I
| I

HelloWorld.class HelloWorld.java

Now list the files there. You'll see this:

$ 1s
Canary.inf bin/ build.sh dist/ src/

My system (Mac OS X) is configured to show directories with a slash at the
end. (If yours isn't, try typing Is-F.) So here I have two files and three directories
in my current directory. File types are often represented by the last part of
the file name—its suffix. Here I have a shell script with an .sh suffix, and a
config file with an .inf suffix. Down in the src/ directory there’s a helloworld sub-
directory; there I have a Java source file with a .java suffix (more about these
kinds of files as we go along).

To go down into the src directory, type cd src, and you're there.

$ cd src
$ s
helloworld

Then down one more into helloworld:

$ cd helloworld
$ 1s
HelloWorld. java

In the src/helloworld directory, there’s the HelloWorld.java file—the “guts” of our
first plugin.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer * 8

But now youre down in HelloWorld/src/helloworld. How do you get back up to
HelloWorld? To go up just one level, you'd type this:

$cd ..

Or to go up two levels, type this:
$cd../..

That’s two periods (or dots), which is pronounced “up one.” One dot by itself
means the current directory, which isn’t very useful with cd, but we will use

“w

.” with other commands—especially when copying files.

But now suppose you need to visit a directory that isn’t just in the current
directory or up one. How do you get there? Suppose I'm somewhere completely
different, like /home/minecraft, and I want to go to /Users/andy/Desktop/code/HelloWorld.

I'd do something like this:

$ cd /Users/andy/Desktop/code/HelloWorld

The leading slash makes the difference. Earlier, when you typed cd src, the cd
command looked for src right under the current directory. But if instead you
typed cd /src it would look for a directory named src under a directory named
“/"—which we call the root.

Root is the topmost directory on your system. It's above your code, above
your Desktop, above everything. Somewhere under root are your home
directory and Desktop. In my case, that’s /Users/andy/Desktop. I could get there
the slow way by typing this sequence of commands:

cd /

cd Users
cd andy

cd Desktop

©“ B

But we’ll see a much easier way in just a moment. And speaking of shortcuts,
you don’t even need to spell out each directory name fully, like D-e-s-k-t-o-p.

On most systems, there’s a nice keyboard shortcut to save you from typing
out long names—the Tab key. If you type in the first few letters of a long name
and then press the Tab key, it will autocomplete to the long name. Suppose
I'm in my code directory:

$ 1s

Adventure CreeperCow LocationSnapshot SquidBomb
ArrayAddMoreBlocks EZPlugin MySimple SquidBombConfig
Array0fBlocks FireBow NameCow Stuck

BackCmd FlyingCreeper NamedSigns install

BackCmdSave HashPlay PlayerStuff mkplugin.sh

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Move Around in File Directories ® 9

BuildAHouse HashPlayClamp PortingGuide.txt numbers
CakeTower HelloWorld Simple runtime
CanaryLinks.txt LavaVision Simple2
CowShooter ListPlay SkyCmd

If I type cd AdTab (or enough letters to be unique) it will autocomplete to
$ cd Adventure/
and I can just press Return. For short names it might not look like much, but

if you have a long directory name like RumpelstiltskinReincarnationSpellPlugin, typing
RuTab begins to look mighty appealing.

Sometimes you might want to copy a bit of text and paste it at the command line.
For instance, you might want to copy a line from this book and paste it in.

Copy and paste at the command line can be a little different from copying in an
application like Mail or a web browser. You still click and drag the mouse to select
text to begin with.

On Linux, you can use Ctrl-C to copy and Ctrl-V to paste in most applications. At the
command line, you may need to add a Shift key, so copy would be Ctrl-Shift-C.

On Mac you use 3$C and 3V to copy and paste.
On Windows the command-line window is slightly different.

First, you need to enable QuickEdit. Right-click the top bar of the command window
and select Properties. On the Options tab, in the Edit Options section, check
QuickEdit Mode to turn it on.

To use: after selecting text, you need to press Enter to copy, then right-click or Ctrl-V
to paste.

That’s just for the command prompt window. Everywhere else on the system (your
editor, etc.) it’s Ctrl-C and Ctrl-V as usual.

Try This Yourself

Let’s make some directories and files using the command line. You're going
to make your own copy of a plugin, with directories and all.

Start off in your Desktop directory (make sure you're there by typing pwd) and
make a new directory called myplugins using the mkdir command.

$ cd Desktop

$ pwd
/Users/andy/Desktop
$ mkdir myplugins

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer ® 10

List out the files on your Desktop (using Is), and you’ll see all the files you
have there as well as the new directory, myplugins. Let's go down into myplugins
and do some work.

$ cd myplugins
Do a pwd to confirm you're in the myplugins directory.

If you do an Is here you won’t see anything—we haven’t made any files there
yet. Let’s fix that by making the directory structure, which will be the same
as for the HelloWorld plugin. Start by making a directory named for the plugin
itself:

$ mkdir HelloWorld

And (you guessed it!) cd down into HelloWorld.

$ cd HelloWorld

Now you can make a few directories that you’ll need: src, src/helloworld, bin, and
dist. Go ahead make those directories here now:

mkdir src
mkdir src/helloworld
mkdir bin
mkdir dist

©“ B

Use Is to make sure they are there.

$ s
bin/ dist/ src/

$ ls src
helloworld/

Now you need three files here, which you can copy from the book’s example
code. You can drag and drop using your regular graphical windows, or use
the copy command, cp:

$ cp ~/Desktop/code/HelloWorld/build.sh .

The tilde character (~) is shorthand for “my home directory.” And hey—we
got to use the single dot! The whole command line means “copy this file to
the current directory.”

You'll need this file too, so copy that over while you're here.

$ cp ~/Desktop/code/HelloWorld/Canary.inf .

Now you've created the directories and supporting files that you’'ll need for a
plugin.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Start at the Desktop ® 11

We'll do all of our work on the Desktop because that’s the easiest place for you to
find files, and it’'s the same across Windows, Mac, and Linux.

Out in the real world you probably wouldn’t want to clutter up your Desktop with
each new project you work on. But until you get more comfortable moving things
around and setting things up, stick to the Desktop.

"
If It Doesn’t Work

One area where you might run into problems is if your home directory contains
spaces. For instance, if you're on Windows and your name is “John Smith,”
typing in a command using the tilde, like this:

$ cp ~/Desktop/code/HelloWorld/build.sh .

makes it look like you typed this:
$ cp C:/Users/John Smith/Desktop/code/HelloWorld/build.sh .
The computer interprets that as saying “copy C:/Users/John and Smith/Desktop/code/

HelloWorld/build.sh” to the current directory. You'll get the error that there is “no
such file or directory.”

You have two workarounds: you can use a relative path, by typing “..” for
parent directories, so you go “up two” and down into code:

$ cp ../../code/HelloWorld/build.sh .

Or just type it in by hand, using quotation marks around the file name:
$ cp "C:/Users/John Smith/Desktop/code/HelloWorld/build.sh" .

Another problem you might run into is not being in the directory that you
think you are. When in doubt, you can always do a pwd command to print
your current working directory:

$ pwd
/Users/andy/Desktop

Here I'm in my Desktop directory, which is where we’ll be starting off for most
of our work.

Start at the Desktop

On most systems, you should be able to type cd Desktop to get to your Desktop.
If that doesn’t work, you may need to type cd ~/Desktop—using the tilde short-
cut—or you might need to spell the whole thing out, as in cd /Users/andy/Desktop.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 1. Command Your Computer ® 12

However you accomplish it, when I say “start at your Desktop” or just cd Desktop,
that’s what you’ll always need to do, whether it’'s from anywhere, like this:

$ cd Desktop

from your home directory first:

$ cd
$ cd Desktop

using a tilde for the home directory:

$ cd ~/Desktop

explicitly typing the name of your home directory:
$ cd /Users/andy/Desktop

or doing that with quotes because you have spaces in the name:

$ cd /Users/"John Smith"/Desktop

No matter what, it will always be shown here as just

$ cd Desktop

And Now for Some Fun

In this book’s downloaded code, in your Desktop/code directory, there’s a special
subdirectory named Adventure. Using the command line, cd there and have a
look at those files and directories.

You can use Is to list the directories as we’ve done here. To take a quick look
at text files (named .txt), you can use the cat command.

Start at your Desktop (however that works for you, as described in the last
section).

$ cd Desktop

$ cd code

$ cd Adventure

$ cat README.txt

These are some files to make exploring the file system a little more fun.

Do an Is and see what else is there and explore a bit in the subdirectories.
See what treasures—and what dangers—you find.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Common Commands ¢ 13

Common Commands

Here are some of the most common commands you’ll use at the shell:

java
javac
cd
pwd
Is
cat
echo
mkdir
cp
mv
rm

chmod

Run Java classes and Java archives (jars) as a program

Compile Java source code to class files

Change the directory

Print the working (current) directory

List files in the current directory

Display the contents of a file

Display text; also display environment variables using the $ prefix
Make a new directory

Copy a file

Move a file

Remove (delete) a file permanently (Use this with extreme caution;
this is not the same as the Trash, and there is no “undo.”)

Change file permissions (including read, write, and execute)
(single dot) Means the current directory
(two dots) Means the parent directory

(tilde) Means your home directory

Next Up

Next you need a way to type in the Java source code. You'll need Java itself,
and an application to put it all together for you. We’'ll install all of that in the
next chapter, and then get to building plugins.

Your Growing Toolbox

You now know how to:

¢ Use the command-line shell

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter you'll add several new applications to your computer,
and add these tools to your toolbox:

- The Java language compiler, javac, and the runtime application,
java

+ The Minecraft graphical client

+ The Minecraft server that we'll be modifying

CHAPTER 2

Add an Editor and Java

To write programs in Java, you need something to write with: some way of
editing Java text files. While you could use a bare-bones text editor like
Notepad or TextEdit, that’s a really painful way to do it.

And you can’t use Microsoft Word or another office-style word processor.
Those applications aren’'t designed for programming, and they don’t store
files in a format that Java can use—Word files are filled with fonts, colors,
sizes, and all sorts of formatting information.

What you need is a text editor that’s designed for programming. I've got a
good one for you, which we’ll see next. You'll also need to install Java to build
and run plugins, and you’ll need Minecraft, of course. With all that installed,
you'll be set to build a plugin in the next chapter.

This chapter may contain some new (and possibly cryptic) commands and
potentially confusing concepts. It’s okay if you don’t know what these mean
and don’t understand fully right now; these aren’t things you’ll run into day-
to-day when writing plugins; they’re just a few necessary evils you need to
get everything installed.

Let’s start with the editor.

Install an Editor to Write Code

You write plugins and programs by typing in kinda-English words and some
funny punctuation. Most things you write will be longer than a text message
but shorter than an essay in English class. You need a proper editor to type
in your programs. My suggestion is an editor called Sublime Text, shown in
the following screenshot.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 16

® 00 ;| HelloWorld.java
HelloWorld java

1 package helloworld;

2 import net.canarymod.plugin.Plugin;

3 import net.canarymod.logger.Logman;

4 import net.canarymod.Canary;

5 dimport net.canarymod.commandsys.x;

6 import net.canarymod.chat.MessageReceiver;
7 import com.pragprog.ahmine.ez.EZPlugin;

8

9 public class HelloWorld extends EZPlugin {
10 @Command(aliases = { "hello" },

11 description = "Displays the hello world message.",

12 permissions = { "" },

13 toolTip = "/hello")

14 public void helloCommand(MessageReceiver caller, String[] parameters) {
15 String msg = "That'sss a very niccce EVERYTHING you have there...";

16 Canary.instance().getServer() .broadcastMessage(msg) ;
}

Sublime Text is available as a download and runs on Windows, Mac, and
Linux.! You can try the free evaluation (there’s no time limit, but it will nag
you every so often) or cough up some bucks and purchase it. If you have a
different editor that you read about or prefer, that’s fine—you can use that.
On Windows, for example, you might want to look at the free editor
Notepad++.” The choice of an editor is very much a personal one. There is no
“right” answer, size, shape, or color. But you do need an editor that has the
right features.

One great advantage of an editor built for programmers is a feature called
syntax highlighting. The editor knows about different parts of the Java lan-
guage and will make language elements like functions, variables, strings, and
keywords show up in different colors and fonts (as in the example in the fig-
ure). That kind of visual support can be really helpful when you're first
learning what all those different things mean. We’'ll get to exploring all of that
in a chapter or two, but first, choose your soon-to-be-favorite editor and install
it. (You might also look into using IntelliJ IDEA or Eclipse. These are full
development environments that include an editor and build support, but they
can be complicated and hard to manage for beginners.)

So fire up Sublime Text (or some other suitable code editor) and give it a whirl.
If you've used anything similar to Word, this will seem at least a little familiar:
there’s a menu bar at the top, and under the File menu you’ll see useful
choices like New, Open, and Save.

Go ahead and type in some text. Maybe write a two-line short horror story or
something (“the reflection in the mirror blinked”). Click and drag to select
text, and press Delete to remove it. For now it’s just a plain old text editor, so
we don’t need to try anything too fancy.

1. http://www.sublimetext.com

http://www.sublimetext.com
http://notepad-plus-plus.org/download/
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Install an Editor to Write Code ® 17

Try This Yourself

Let’'s make sure you can create a file, edit it, and save it. You're not quite
ready for a full plugin yet, so let’s start with a simple test file.

In the editor’s menu, start with File -> New File to create an empty text window
that you can type into.

Before you start typing, save the file by name. Select the menu item File -> Save
As and save the file as CreeperTest.java on your Desktop. Just like that—with a
capital C and T, and lowercase other letters. Now that you've saved the file,
your editor will know you're going to type in Java code.

Type in the following text, just like I did:

® Sublime Text 0 Tools Project Window Help
8 .06 [i] CreeperTest.java

CreeperTestjava %

1 public class CreeperTest {
public static void main(String args[]) {
System.out.println("That'sss a very niccce program you have there...");
}
}

U kA WwWwN

Be sure to copy the text exactly, starting with “public class” through to the
last “}>—including all punctuation, spelling, capitalization, and spacing—but
not the line numbers, since those are part of the editor. Use the Delete key
(sometimes labeled “backspace”) to erase any mistakes.

Now select File -> Save to save the file with your text.
Ta-da! Now you have a file with Java source code.

And the computer has no idea what to do with it. It’s just a file of text; as far
as your computer knows, it could be a recipe for snacks or an essay or a list
of game cheats. We need to fix that next.

What you need now is Java itself.

A reminder: when we're using the bash shell from BusyBox, all directories use a for-
ward slash (“/”). But the rest of the Windows system will still use backslashes (“\”).
So what Windows and the installation programs call this:

C:\Users\yourname\Desktop\server

we’ll call C:/Users/yourname/Desktop/server

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 18

Install the Java Programming Language

“‘Java” isn’t just one application—it’s actually several. There’s the Java com-
piler, javac, the Java program runner, java, and the archiver utility, jar. javac
takes your text file and creates a magical pile of gunk it calls a class file. You
run the java command and tell it to use that pile of gunk, and your program
springs to life. We'll look at that process in more detail as we go along, but
that’s the gist of it.

You might have Java installed already. Try running the Java compiler, javac,
and see if it’s there:

$ javac -version
javac 1.7.0

Yup, it’s installed on my machine, version 1.7. If it was not installed, I'd get
a message like this:

$ javac -version
bash: javac: command not found

You might also want to check that your java is indeed the same version as
your javac (it should be, but things happen):

$ java -version

java version "1.7.0 67"

Java(TM) SE Runtime Environment (build 1.7.0 67-b01)

Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

If you need to install Java, you’ll want the Java Development Kit Standard
Edition (JDK SE) version 7 or later, which you can download for different
operating systems.3 Depending on your operating system and vendor, you
may or may not have Java installed yet, you might only have java and not
javac, or you might have a slightly different version. Again, you’ll need Java
JDK 1.7 or later to work with the examples in this book.

No matter which operating system'’s installer you use, I heartily recommend
you accept all the default answers to any installer questions, especially for
the install location. Java and its associated programs can get more than a
little quirky and fussy if things aren’t where they expect.

So go download the Java Development Kit (JDK) installer and follow its
instructions.

3. http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Install the Java Programming Language ® 19

Depending on your platform, you might need to add the JDK’s bin directory
to your “path.” We'll look at what that means and how you do it in the next
section.

But first let’s try a little exercise and see if it works.

Try This Yourself
With the JDK installed, you can now run that test program you typed in.

Again, this is just a simple program to make sure Java is happy. It’'s not a
Minecraft plugin yet, but it's a start. As soon as you get this working, you’ll
be ready to start building Minecraft plugins.

cd to your Desktop and make sure the CreeperTest.java file is there:

$ cd Desktop
$ s
CreeperTest.java

Now run the Java compiler on Creeperfest.java by executing the javac (Java
compiler) command.

$ javac CreeperTest.java
$ 1s
CreeperTest.class CreeperTest.java

The javac program first checks to make sure it understands everything you
typed in the CreeperTest.java file. If there are no mistakes, then it creates the
binary class file.

But the odds are that most of the time there will be mistakes. Don’t worry if
you get a ton of error messages: you didn’t break your computer. Programming
languages like Java are notoriously picky about capitalization, punctuation,
and all the other things we type in that file.

Remain calm. (That, by the way, is generally good advice when working with
computers.)

Try to decipher the message the computer gives you, and double-check all
the code against our example from a moment ago. We’ll walk through several
likely problems next. There’s also some advice in Appendix 1, How to Read

where other folks are wrestling with this stuff too!*

Once javac happily finishes its work without errors, you're ready to run.

4. This book’s discussion forum is at https://forums.pragprog.com/forums/382.

https://forums.pragprog.com/forums/382
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 20

You can call Java to run your program, giving it the name part only (not the
.class suffix):

$ java CreeperTest
That'sss a very niccce program you have there...

Hey, it worked! Congratulations—you've compiled and run your first piece of
code. Skip ahead to the Minecraft installation section that starts on page 23.

Otherwise, let’s see what might have gone wrong.

If the Java Command Is Not Found

The most likely error you'll see is “javac not found” or “java not found,” which
means that even though you installed Java, your shell couldn’t find the java.exe
or javac.exe applications. Here’s what’s going on:

The commands you've used so far are either built in or were installed by the
BusyBox installer. But when you install Java, the computer may not know
where you put it.

When you go to type in the command javac, the computer needs to find an
executable named “javac” (on Windows it’s javac.exe; on Mac/Linux, it’'s just
javac). There are a couple of standard places that it knows to look. On Windows,
that might include a directory like C:\Windows\System32, and on Mac/Linux there
could be several directories, like /usr/bin, /usr/local/bin, and so on.

Because the system has its own commands that you shouldn’t mess with, and
because you want to add your own commands to run, it turns out there are
a lot of places the computer needs to look! You can tell it exactly where to look
with a list of directory names. We call that your search path, or path for short.

You can see what’s in the path for your shell window by typing this:

$ echo $PATH

For the shell/command-line processor to find a command to execute, it must
be in a directory that’s in your search path. So you’ll need to add Java’s bin
directory to your path.

That directory’s location depends on your operating system and what installer
you used. A typical location for Windows would be C:\Program Files\Java\jdk1.7.0_67\bin
(your version numbers may be a little different).

On Magc, it’s probably installed in /usr/bin or /usr/local/bin, both of which are
already in your path. But it might be installed someplace else completely, like
in /opt/localfjava.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

If the Java Command Is Not Found * 21

In any case, once you've located the install directory for Java, you'll see a bin
directory in there. In that bin directory you’ll see java, javac, jar, and a whole
bunch of other things. You'll need to add the full path for that bin directory
to your shell’s PATH.

The PATH is a list of directories, separated by a colon (semicolon on Windows).
To change your PATH for the bash shell that we're using, follow these steps:®

1. In the shell, navigate to your home directory by typing cd, by itself. Confirm
the full path of your home directory by typing pwd.

2. Using your text editor, create or edit the bash startup file in your home
directory. Normally this will be a file named .profile or .bash_profile in your
home directory (note the leading dot). On Windows using BusyBox, you
have to use .profile. Otherwise you should use .bash_profile. Is won’t normally
show files with a leading dot, but Is -a will show it if the file already exists.
You may need to create it from scratch, and that’s okay.

3. Add aline to the file to modify the PATH setting, adding Java’s bin directory,
separated by a colon (:}—or a semicolon (;) on Windows.

For example, on Linux or Mac, if my JDK was installed in /opt/local/java, I'd add
a line to .bash_profile that said

export PATH="$PATH:/opt/local/java/bin:"

On Windows, you need to change the backslashes to slashes and use semi-
colons instead of colons, so if Java’s installed in C:\Program Files\Java\jdk1.7.0_67\bin
(which is Windows style) you add a line to .profile that says this, in POSIX style:

export PATH="$PATH;C:/Program Files/Java/jdkl.7.0 67/bin;"

Save and close the file, then close and reopen your command-line windows
to pick up the new settings.

Seriously—you have to close all your open command-line windows and reopen
them for this to take effect.

To check your path and see if your new setting worked, type this:

$ echo $PATH

You should see your new entry that includes Java’s bin.

5. Ifyou run into trouble with this method, especially with Windows, take a look at
http://www.java.com/en/download/help/path.xml.

http://www.java.com/en/download/help/path.xml
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 22

Other Reasons It Might Not Work

Here are some other things that might go wrong even if the PATH is set correctly:

Make sure you are in the right directory; type Is and check that the file
CreeperTest.java is right there.

Make sure you're typing javac CreeperTest.java (with the .java part). Otherwise you
might see a truly confusing error message like this one:

error: Class names, 'CreeperTest', are only accepted if
annotation processing is explicitly requested

If the javac command reports some kind of “syntax” or “not found” or “not
defined” error, that means it doesn’t understand the text in the CreeperTest.java
file, so you may have mistyped something. These kinds of errors might look
something like this:

CreeperTest.java:1: class, interface, or enum expected

Or you might see some other error message. The number in between the
colons (:1:) is the line number where the typo is located.

If you can’t find the typo, grab a fresh copy of the file from this book’s down-
loaded source code, at code/install/CreeperTest.java, and try that.

If the java command can’t find CreeperTest.class, make sure the javac command
ran okay and that it produced a .class file successfully. You should be in that
same directory when running java.

If you see this error

Exception in thread "main" java.lang.NoClassDefFoundError: CreeperTest/class

you may have accidentally typed java CreeperTest.class (with the .class part at the
end) instead of java CreeperTest (no suffix). To recap, these are the commands
to compile and then run:

$ javac CreeperTest.java
$ java CreeperTest

That is, you must specify the java suffix when compiling, but do not type in
the .class part when running with java.

Also, check to see if there’s a setting for CLASSPATH (which is just like PATH, but
for Java classes).

$ echo $CLASSPATH

$

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Install the Minecraft Client and Server ® 23

It should be blank. If it’s not, make sure it at least includes a single dot (“.”)
to include the current directory.

If all else fails, don’t be afraid to ask around for help. Programming is most
often a team effort.

Phew! That was the hardest part.

Once you have Java working, you need to install the Minecraft parts.

Install the Minecraft Client and Server

Minecraft is a client-server system, so you'll need both parts: the desktop
graphical client that you use to play the game, and the server process that
you connect to, where we’ll add plugins.

Install the Minecraft Graphical Client
You probably have this part already, but if not, download the Minecraft

instructions to install it, but don’t run it just yet.

When you play Minecraft, this “client” is the application that you run. It

There are also clients for Apple’s iOS and Android devices, including smart-
phones, but they are a dead end. As I'm writing this, they don’t connect to
normal Minecraft servers, so they can’t use our custom plugins.

The client handles the graphics and sound, and lets you type chat commands
in the game. But right now it has no local game to connect to—guess we
better go grab and download that server code.

Install the CanaryMod Server

Now for the fun part. You'll be adding plugins to your own server, so you’ll
need CanaryMod, a special Minecraft server from the fine folks at CanaryMod.net
that’s designed to use plugins.

Make a directory named server on your Desktop (that means it would be
located in a directory named something like /Users/yourname/Desktop/server):

$ cd Desktop
$ mkdir server

We'll call this your server directory, and that’s where you’ll install the server
parts.

http://minecraft.net
http://minecraft.net
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 24

The CanaryMod project comes in a single jar file: CanaryMod.jar, which is used
to run the game server itself, and also what we use to develop new plugins.

Hop on the Web and visit the CanaryMod project’s release page at
correspondmngecraft version number. I'm using the latest release, which
right now is for Minecraft 1.7.10. You'll want to download the latest jar file.
I've also included a copy in the downloads for this book for your convenience.

Each jar may be named with extra version numbers (something like CanaryMod-
1.7.10-1.1.0.jar; your numbers will probably be larger). Download the file to your
Desktop/server directory, and rename it to just CanaryMod jar.

You can do that from the shell with the mv (move file) command and the
wildcard character (¥), which matches all the numbers so you don’t have to
type them out:

$ cd server

$ pwd

/Users/andy/Desktop/server

$ ls

CanaryMod-1.7.10-1.1.0.jar

$ mv CanaryMod*.jar CanaryMod.jar
$ Us

CanaryMod.jar

The example code for this book contains a subdirectory named runtime. In the
runtime directory you’ll see a startup script named start_minecraft. Copy it to your
server directory using the copy command, cp. You're still in that directory, so
you can just copy using “..” to refer to the Desktop, and “.” to refer to your
current directory, server:

$ cp ../code/runtime/start_minecraft .

We'll use that start_ minecraft script to start up and run the server. It's going to
run the Java command, passing in an option to make sure we have enough
memory to run (the magical-looking -Xmx1024M), and then passing in the jar
file to run, CanaryMod.jar:

java -Xmx1024M -jar CanaryMod.jar

The first time the Minecraft server runs, it creates a whole bunch of files,
including the default World, and then exits. Go ahead and run it (still in the
server directory):

$./start_minecraft

http://canarymod.net/releases
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Install the Minecraft Client and Server ® 25

Note I used “./” as part of the command name. That will run the command

from the current directory. If the current directory (“.”) is in your path, you
won’'t need to use the “./” sequence.

If you get an error that reads ./start_minecraft: Permission denied, then you’ll need
to type in the following line to make the file executable:

$ chmod +x start_minecraft

Once the server launches, Minecraft will spew a bunch of text out to your
terminal. Here’s what that looks like on my machine; your directory names,
timestamps, and version numbers will be different, but should look something
like this:

$ cd Desktop

$ cd server

$./start_minecraft

Please wait while the libraries initialize...

Starting: CanaryMod 1.7.10-1.1.0

Registered xml Database

Found 24 plugins; total: 24

[10:48:32] [CanaryMod] [INFO]: Starting: CanaryMod 1.7.10-1.1.0

[INFO]: You need to agree to the EULA in order to run the server.
Go to eula.txt for more info.

There’s a lot of spew in the middle there that I left out, but you get the idea.

Somewhere in the middle of the spew, it mentions accepting a license agree-
ment. You need to edit the file eula.txt that it just made in the server directory.
If you agree to Mojang’s End-User License Agreement (EULA) change the line
containing eula=false to eula=true, and save the file. Now you can start the
server again with ./start_minecraft. You’ll get similar spew this time, but now its
waiting for you to type a command at the > prompt.

One more thing before we get started: you want to grant yourself operator
(op) privileges. To do that, just type the op command with your Minecraft user
name at the server’s prompt:6

> op AndyHunt
[14:32:36] [CanaryMod] [INFO]: [SERVER] Opped AndyHunt
>

6. Some earlier versions of Canary would report an error from the op command, even
though it actually worked. Just ignore the error.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java *® 26

Start-up errors

In some versions of CanaryMod, you might see an error on startup that says something
like Error on line 1: Premature end of file. net.canarymod.database.exceptions.DatabaseWriteException.
While somewhat scary looking, it just means that the server tripped over itself getting
everything set up. Just delete the files in Desktop/server/db and try again.

Without operator privileges, you won’t be able to break blocks or place any-
thing in the game, so don’t skip this step!

If you are planning on inviting friends to play on your server, you can either
op each of them as well, or you can give all visitors permissions to build:

> groupmod permission add visitors canary.world.build

> [14:33:39] [CanaryMod] [INFO] [MESSAGE]: Permission added

When you're ready, you can stop your Minecraft server at any time by typing
the command stop, like this:

>stop

[10:50:10] [CanaryMod] [INFO] [NOTICE]: Console issued a manual shutdown
[10:50:10] [net.minecraft.server.MinecraftServer] [INFO]: Stopping server

[10:50:10] [CanaryMod] [INFO]: Disabling Plugins
$

And you’ll be back to the command-line prompt again.

Start your server back up and leave it running, and we’ll try to connect to it
from the client.

1800 Minecraft Launcher 1.5.3

PUEEERSNEIET Launcher Log | Profile Editor |

Next, start up your

Minecraft client and : Fic
Minecraft News ial links:

log in wusing your i

Minecraft user name Minecraft 1.8 - The Bountiful Update

and password. With 7' nd Diorite stone blocks, with smooth versions

any luck, you’ll see a e

launcher.

Try our other games!

Note the version num-
ber in the lower right- :
hand corner, Say1ng 0 d type variants Mojang on Twitter:

Community links:

w craftable

Welcome, AndyHunt

it's ready to play with ™ S e e
a version 1.8 server.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Install the Minecraft Client and Server ® 27

When you start up the Minecraft client, you can tell it what version to use.
This needs to match the version of Canary you downloaded. As I write this
the latest version of the Canary server is 1.7.10, but the client that you just
installed defaults to Minecraft 1.8, which CanaryMod doesn’t support. That
won't work. You’'ll need to tell the Minecraft client to use the correct version.

In the Minecraft startup program, click on Edit Profile in the lower left.
o S S S S s S
Profile: | AndyHunt &)

| New Profile | | Edit Profile | L

Look for the Use Version setting in the dialog box that pops up. Change the
option to use the current version of your Minecraft server, and click Save
Profile.

Version Selection
[_| Enable experimental development versions ("snapshots")
[| Allow use of old "Beta" Minecraft versions (Frem 2010-2011)

|_| Allow use of old "Alpha" Minecraft versions (From 2010)

Use version: | release 1.7.10

By the time you read this, the version numbers might be completely different.
Whatever the versions are, you’ll need to check the version in the client and
make sure it matches the server’s version. Go ahead and click the Play button.

800 Minecraft 1.7.10 '

© hultie

Himez-att Feal

-

| [t @ame

Minecraft 1,716 Copyright MoJana A6 Do not distribute!

report erratum

« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 2. Add an Editor and Java ® 28

Now, click Multiplayer. Next, you need to add your local server. Click Add
Server and type a name for your server. Use localhost for the server address,
as shown here:

‘® 00 Minecraft 1.7.10 "

Edit Server Info

Your server will show up on the pick list (along with any other servers you
regularly connect to), as shown in the following image:

Minecraft

Flay Multiglayer

Andy’s Hinecraft Serwver

Scanning for games on gour local network

Jdoin S

Edit

Select your server from the list, then click Join Server. Welcome to the world!

If you get disconnected right away, you may have a version mismatch; double-
check which version of the client you're using.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ® 29

Once connected, you're in the Minecraft world on your own local Minecraft
server. Congratulations!

You can take this time to do a little setup in the Minecraft world. Maybe build
yourself a nice house before the creepers come....

Next Up

That’s a great start, and now you have a full-fledged Minecraft server running
on your own computer.

In the next chapter we’ll roll up our sleeves and compile and install our first
real plugin.

Your Growing Toolbox

You now know how to:

¢ Use the command-line shell
¢ Build with Java, javac
¢ Run a Minecraft server

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

After completing this chapter you'll know how to

» Compile Java source code to .class files, pack them in a jar, and
install them on a Minecraft server

» Run your local server with a new plugin

« Connect to your local server

CHAPTER 3

Build and Install a Plugin

Now that you have the tools installed, we’ll build a simple, basic plugin. It
won’'t do much as plugins go, but it will make sure you can build and run
your own plugins, and it will act as starting point (or skeleton) for all the
plugins we’ll write in this book.

So how do your typed-in instructions end up running on a Minecraft server?
Here’s how the whole process works.

You type Java language instructions (we call that “source code”) and save
them into a text file, and then the Java compiler, javac, reads your text file
and converts it into something the computer can run.

You went through this process already with the simple CreeperTest.java program
you typed in previously.

For the source code you type into a file named CreeperTest.java you'll get a
binary (not text) file named CreeperTest.class. A binary file is just a file of numbers
—it makes sense to the computer, but not to humans.

Because a typical program might use lots and lots of class files, you usually
archive a bunch of class files into a jar file, and Java runs the code from the
jar.

Java (the java program itself) reads class files and jar files to create a running

process on the computer. With Minecraft, this will be the server process that
your Minecraft clients connect to. For now, the only client will be you.

The following figure shows how these parts all fit together. The javac compiler
takes your Java source code, and definitions it finds in CanaryMod.jar, and pro-
duces a class file. That class file gets packed up with the Canary.inf file into a
jar that is your plugin. Then at runtime, Java starts the server from CanaryMod jar
and loads your plugin from its jar.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 32

j javac
1. Compile HelloWorld.java I J I

«
v
HelloWorld.class

jar

CanaryMod.jar

HelloWorld.jar

2. Run Server side

—————————— i —T——————————————————-network

Minecraft Application i i
Client side
3. Connect
and
play

In the Java world, you have to place all these files in specific places for
this all to work. We made a directory structure like that earlier, all ready
for your version of the HelloWorld plugin. I've also got a complete plugin all
set up for you in the HelloWorld directory in the code for this book, which
you downloaded to Desktop/code/HelloWorld.

So in Desktop/code/HelloWorld, you’ll find a directory tree for the source code,
under src. You’ll also see a bin directory where the compiled class files are
created, and a dist directory where the class file and configuration files are
packed together into a jar file. When you're ready to share your plugin
with others, you’ll give them the jar.

HelloWorld is one development directory. You’ll probably have one of these
for each plugin you develop, each with its own src, bin, dist, and so on.

Then over in your server directory at Desktop/server, you have the Minecraft
server files, including CanaryMod.jar, which contains all the bits you need to
run the game, as well as the parts we’re using to develop code in the
Minecraft worlds.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: HelloWorld ® 33

Also in server, there’s a directory for plugins that the Minecraft server will
use when it runs, and the lib directory (we’ll use that at the end of this
chapter for our EZPlugin library).

When working on code in the development directory, the last step once
you're ready to test it out in a server is to copy the jar file up to the server’s
plugin directory (see the following figure).

We'll see how to do that automatically in just a second.

Desktop/

7 4 \
’ il \

’ 4 \

/ Pid \

HelloWorld/ CanaryMod.jar plugins/

|
|
I
4 1
|

dist/
HelloWorld.jar

Copy to install P

-
-
-
HelloWorld.jar

- -
Java tends to use paths and configuration files to specify where all these
files and directories live. It can get a little tricky at times, as there are a
lot of moving parts, and it’s frustrating when Java can’t find some critical
file that is sitting right there in front of you. Just because you know where
a file is doesn’t mean Java knows.

Now let’s look at the source code, then cover how to build and install it.

Plugin: HelloWorld

It's a long-held tradition in the programming world to start off with a
simple test program that prints out the message “Hello, World.” So we’ll
start off by building and running an existing plugin that does that in
Minecraft—except we’ll send out a slightly more interesting message.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 34

Here is the Java source code for our HelloWorld plugin, which is already typed
in for you in the file ~/Desktop/code/HelloWorld/src/helloworld/HelloWorld java. There’s a
lot of weird stuff in here. (If you haven’'t downloaded the code for this book to

and create all the files.)

HelloWorld/src/helloworld/HelloWorld.java
© package helloworld;
@ import net.canarymod.plugin.Plugin;
import net.canarymod.logger.Logman;
import net.canarymod.Canary;
import net.canarymod.commandsys.*;
import net.canarymod.chat.MessageReceiver;

(3) public class HelloWorld extends Plugin implements CommandListener {
public static Logman logger;

public HelloWorld() {
logger = getlLogman();
}

@Override
public boolean enable() {
logger.info("Starting up");
try {
Canary.commands () .registerCommands(this, this, false);
} catch (CommandDependencyException e) {
logger.error("Duplicate command name");

}
return true;
}
@Override
public void disable() {
}
(4] @Command(aliases = { "hello" },
description = "Displays the hello world message.",
permissions = { "" },

toolTip = "/hello")
© public void helloCommand(MessageReceiver caller, String[] parameters) {
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);
}
}

http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://media.pragprog.com/titles/ahmine2/code/ahmine2-code.zip
http://media.pragprog.com/titles/ahmine2/code/HelloWorld/src/helloworld/HelloWorld.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Configure with Canary.inf ® 35

Don’t be discouraged if this looks like space-alien speech or Elvish right now.
We'll make sense out of it over the next several chapters. Instead focus on
what is familiar: there are some English words in there, like “import” and
“public” and “return,” and what might be sentences or statements of some

kind, which all end with semicolons (“;”). There are also some strange charac-
ters like “{” and “}” that seem to be important.

What does it all mean? Well, this plugin implements a user command, /hello,
which will broadcast the traditional creeper greeting, “That’sss a very niccce
EVERYTHING you have there...” to all online players in Minecraft.

Notice that the name of this plugin is declared as public class HelloWorld on the
line at @. That’s the same name as the file name that contains this code:
HelloWorld.java. This piece of code is also set up to be in a package—that is, a
group of related files—using the same name on the line at @. The package
name is all lowercase, and it’s also the directory name where our Java source
code file lives, under src¢/ in helloworld/HelloWorld.java.

It's important that the names in all of these places match; a typo on one of
them can lead to strange errors.

You use import statements (you’ll see these beginning on the line at @) to get
access to other things that you need in your plugin, like parts of the Canary
library and other Java libraries. If you forget to include an import for something
you need, you'll get an error that says “cannot find symbol” because Java
doesn’t know what you mean. For your convenience, I've included a list of all
the imports we're using in Appendix 7, Common Imports, on page 253.

The code for our plugin starts at @, and there’s this funny @Command annota-
tion (a kind of a tag, not actual code) at @ that describes the command itself.
Finally, the code for that command starts at @.

We'll look at all that and more later, but first, we need to let the server know
that we've got a plugin for it to load.

Configure with Canary.inf

This source code alone isn’t enough; you also need a configuration file so that
Minecraft can find and launch your plugin. The configuration file is named
Canary.inf and looks like this:

HelloWorld/Canary.inf

main-class = helloworld.HelloWorld

name = HelloWorld

author = AndyHunt, Learn to Program with Minecraft Plugins
version = 1.0

http://media.pragprog.com/titles/ahmine2/code/HelloWorld/Canary.inf
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 36

Here’s a description of what this file needs. Don’t worry much about the details
yet—it will make more sense as we get further into the book.

main-class
Name of the package and class that Java will run to start this plugin
(package.classname).

name
Name of the plugin—in this case, HelloWorld.

author
Name of the author (that’s you).

version
Version number of your plugin. Start low, and increment the number
each time you release a new version to the world.

Build and Install with build.sh

The commands you've been typing in your terminal window can also be saved
into a file; that way you can run them over and over again without having to
retype them each time. We call this a shell script, and it’s another way to
program the computer.

Building a plugin is only a little more complicated than compiling a single
Java file as we did last chapter, but even so, it involves a lot of commands
we don’t want to have to type out every time.

To make it easier, I've made a shell script for you named build.sh that will do
the three main steps:'

1. Use javac to compile the .java source to .class files.
2. Use jar to archive the class files, manifest, and configuration file.
3. Copy the jar file to the server.

After that, you’ll need to stop and restart the server so it can pick up the
changes.

The build script needs to know where your server directory is located. At the
very top of the script, it says this:

MCSERVER=$HOME/Desktop/server

1. For larger projects, folks use tools like Ant, Maven, or Gradle when the build becomes
more complex and has to manage dependencies among many parts. But that’s overkill
for our needs here.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Build and Install with build.sh ® 37

For most people that should just work if your server directory is located on
your Desktop. If that doesn’t work, you’ll need to edit the build.sh file and
change that directory so that the MCSERVER= points to your local Minecraft
server directory. That MCSERVER= setting is how the script knows where to find
the server.

Change your current directory to the HelloWorld directory. From there, run the
build.sh script (this is what we’ll do for each plugin from now on):

$ cd

$ cd Desktop

$ cd code/HelloWorld
$./build.sh

(Remember, no matter how you actually get to your Desktop, I'll just show it
as cd Desktop from now on for reference. You may need to do a cd ~/Desktop or start
at your home directory and go down, depending on your particular system.)

You should see results that look a lot like this:

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Check to see that the file really was installed in the server directory:

$ cd Desktop

$ cd server/plugins
$ 1s
HelloWorld.jar

Yup, the jar file is in the server directory. Success!
If you get errors, here are a few things to check:

e If you get the error ./build.sh: Permission denied you might need to type chmod
+x build.sh to give the script executable permission.

e If you're seeing syntax errors, make sure you are using a fresh copy of
the files downloaded from this book’s website, with no local modifications.

e If everything compiles okay but you get an error trying to copy the jar file,
make sure the server directory is correct.

If the script is having trouble finding the server directory, edit build.sh and change
the MCSERVER= directory name to the correct location of your Minecraft server.”

2. Make sure it’s spelled correctly and starts with a “/” character so that you have the full
path to your server starting at the root directory.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 38

(If you have to change it here, you may need to do the same thing for each new
plugin’s build script as we go along).

Once it compiles and installs, you are excellent! Now you have a compiled
plugin, ready for the Minecraft server to use.

If your server is still running, it won’t know about this new plugin. You have
to stop it and then restart it.

> stop

[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Stopping server

[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving players

[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving worlds

[14:36:24] [net.minecraft.server.MinecraftServer] [INFO]: Saving chunks
for level 'default'/Overworld

[14:36:24] [CanaryMod] [INFO]: Disabling Plugins ...

$./start_minecraft

08:47:32 [INFO] [HelloWorld] Loading HelloWorld v0.1

08:47:32 [INFO] [HelloWorld] Loaded.

08:47:32 [INFO] [HelloWorld] Enabling HelloWorld v0.1

08:47:32 [INFO] [HelloWorld] Starting up.

08:47:32 [INFO] Server permissions file permissions.yml is empty, ignoring it

08:47:32 [INFO] CONSOLE: Reload complete.

>

And there’s the startup message from our new HelloWorld plugin. If you don’t
see any message from HelloWorld starting up, then your Minecraft server can’t
find it. Make sure the HelloWorld jar file is in the server’s plugins directory, stop
the server, and try starting it up again.

Once you're connected and in the Minecraft world, you can test out your fine
new command from the client chat window. In the Minecraft game, just start
typing /hello and see what happens. As soon as you type the “/” character,
you’'ll see that you're typing in a chat window at the bottom of the screen.
Press Return and...

...you should see our message appear in the server log console and in the
game window. This is what it looks like in the server console:

14:47:58 [INFO]: Command used by AndyHunt: /hello
14:47:58 [INFO]: That'sss a very niccce EVERYTHING you have there...

And here’s what it looks like in the game window:

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Using EZPlugin * 39

EVERTTHIMG gou have there..,

[

In case you aren’t familiar with the Minecraft graphical user interface (GUI), here are
a couple of quick tips. You can check out some of the many YouTube tutorials or
official docs for more.

The keys W, A, S, and D move you forward, left, backward, and right, respectively.
Use the Spacebar to jump.

Use the mouse to control the direction you are facing.

You “hit” things with your left mouse button—for example, to strike with a sword or
dig with a pickaxe or shovel.

You “use” items with your right mouse button—for example, placing an item or
opening a door.

You type commands to Minecraft with a leading “/” character. You can change the
game to creative mode with /gamemode ¢, and back to survival mode with /gamemode s.

.
Using EZPlugin

As we go through the book, we’ll talk more about the Java language, and
explain what all the bits and pieces in HelloWorld.java actually do. But about
half of this code isn’t really important to us right now. What’s more, it’s always
going to be exactly the same for each plugin we use. We're going to move it
out of the way so you won'’t have to keep looking at it in every single plugin
that we work with.

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 40

In the downloaded code, I've included a special library called EZPlugin. I moved
all the stuff that’s going to be the same for all plugins into EZPlugin.java. That’s
going to make our next plugins much smaller and easier to read.

All of the other plugins (past HelloWorld) depend on EZPlugin, so we’ll need to
build it before we go on. The build process will install it in the server’s lib

(short for “library”) directory:
(=D
(HelloWorIdEZ/) (CanaryMod.jar) (plugins/) < lib/ >

/

EZPlugin jar
dist/
HelloWorld.jar

HelloWorld.jar

At your command line, change your current directory to the EZPlugin directory.
From there, run the build_lib.sh script. So for me, I can start anywhere and go
to my home directory, then I can cd down into Desktop, then code, then EZPlugin:

$ cd

$ cd Desktop

$ cd code/EZPlugin
$./build_lib.sh

You should see results that look a lot like this:

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Check to see that the file really was installed in the server’s lib directory:

$ cd Desktop

$ cd server/lib
$ 1s
EZPlugin.jar

Once EZPlugin.jar is there, you won’t need to run build_lib.sh again. All the other
plugins can use it now.

Next, get rid of the first version of HelloWorld.jar, in the server’s plugins directory:

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Using EZPlugin © 41

$ cd ../plugins

$ 1s

HelloWorld.jar

$ rm HelloWorld.jar
$ 1s

$

Now have a look at a much simpler version of HelloWorld, which uses EZPlugin,
and is located in code/HelloWorldEZ/src/helloworld/HelloWorld.java:

HelloWorldEZ/src/helloworld/HelloWorld.java

package helloworld;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;
import com.pragprog.ahmine.ez.EZPlugin;

public class HelloWorld extends EZPlugin {
@Command(aliases = { "hello" },
description = "Displays the hello world message.",
permissions = { "" },
toolTip = "/hello")
public void helloCommand(MessageReceiver caller, String[] parameters) {
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);
}
}

Notice that this just has a bunch of imports at the top, and then the command
business—the part were actually interested in—down at the bottom. This
will be the skeleton for all our upcoming plugins.

Go ahead and make sure you can build it, and that it can find the EZPlugin
library:

$ cd Desktop
$ cd code/HelloWorldEZ
$./build.sh

You should see the usual successful output:

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

If not, double-check that EZPlugin.jar is in Desktop/server/lib, and go back into
EZPlugin.jar and rebuild it if needed.

http://media.pragprog.com/titles/ahmine2/code/HelloWorldEZ/src/helloworld/HelloWorld.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 3. Build and Install a Plugin * 42

Next Up

Congratulations! You just compiled and installed a plugin from source code,
installed it on your local server, connected, and tested it out! You then built
the EZPlugin library and installed it as well.

With that out of the way, we’ll spend the next few chapters taking a deeper
look at all the source code that makes a plugin, and see what makes Java
tick so you can make your own plugins.

Your Growing Toolbox

You now know how to:

¢ Use the command-line shell
Build with Java, javac

Run a Minecraft server
Deploy a plugin

L]
L]
L[]
¢ Connect to a local server

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter we'll take care of a lot of the basics of writing Java
code. With these tools in your toolbox, you'll know the following:

+ What the funny characters mean in Java

» How to use variables to hold number and character string val-
ues

- How to declare and use functions: lists of Java instructions

- How to control code with if, for, and while statements

CHAPTER4

Plugins Have Variables,
Functions, and Keywords

As you may have noticed, there’s a lot of text in the plugin source code that
I haven't explained yet. Let’s dig deeper into Java and take a look at what all
that text means—it’s the raw material of programming plugins.

As you saw in Chapter 3, Build and Install a Plugin, on page 31, a program
in Java is just a text file. Look at the text in HelloWorldjava: there’s a lot of sort-
of English words, and some strange-looking punctuation. All of it means
something, and the Java compiler is mighty picky when it’s reading your text.
First of all, spelling counts. Entity is not the same as Entitee. Player is not the
same as player, so uppercase and lowercase matter, too. There are times when

you use uppercase, and times you need to use lowercase.

Each of those odd characters you see has a special meaning, and they're used
for different things. Here are some examples (don’'t worry much about the
details yet):

// Comment, used to leave a note for yourself or others. Java will
ignore anything you type from after the double slash to the end of
the line.

/¥ longer comment */

Used for longer comments, either on one line or spanning multiple
lines.

() Parentheses, used when calling a function and passing data to it,
like this: System.out.printin("Hello, Creeper");.

[1 Brackets, used for choosing one item from a list of items, like this:
second = myArray[1];.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 44

{1 Braces, used to mark the beginning and end of a section of code.

Dot, used to select a part of something. Most often you use this to
select a function that’s part of an object, like System.out.printin() or
player.getLocation().

; Semicolon, used to mark the end of a code statement. Leaving the
semicolon off at the end of a line of code is a surefire way to make
Java angry and have it spew hundreds of error messages at you.

Some words you type are special, and you have to use them the way Java
says to. Other words you can make up yourself, and could be anything from
ImmortalPlayer to rathead. So how does this all fit together?

To create a program or a plugin in Java, you use all these bits of text to create
two different kinds of things: data and instructions. That’s all there is to any
computer program or to a Minecraft plugin. It’s all just data and instructions.
Here’s how we work with them.

First I'll show you how you declare and use these things, and then you’ll need
to try it yourself in your very first plugin.

Keep Track of Data with Variables

Data are facts—things like your age or the color of your
bicycle. To work with these facts in Java, you hold them in
variables. A variable is a holder of data. Think of it like a
small box you can put things in.

In Minecraft, we use variables to keep track of things like ag e
players in the game, a player’s current health and location,

and all the other data we need to know. (In fact, you're going to add some
variables to a piece of code in just a minute—a plugin that will build you a
house.)

A variable is the box that holds that data. You can put a label on the box,
but that’s just a label for your convenience—it doesn’t affect what’s inside.

Here’s how to use variables. For this example, we’ll make a variable called
age, and tell Java to set the value of that variable to 15, either in two steps
or all in one step:

int age;
age = 15;
or

int age = 15;

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Keep Track of Data with Variables ¢ 45

The important part here is that you're telling Java the type of the variable
you want to make—in this case, a whole number (no fractional part or decimal
point). A whole number is known as an integer, which is abbreviated in Java
as int.

There are lots of types in addition to int, including float and double, which hold
fractional numbers (with decimal points); String, which holds a sequence of
characters such as "Hello, World!"; types you can create yourself, such as NunChuck
or CowBell; and types that Minecraft defines, such as Player and Location. Any
time you declare a variable in Java, you need to specify the type for that
variable. Java can’t guess; you need to tell it.

You can create the variable and assign its value in one step, or create the
variable first and then assign it later. In either case you can put a new value
in that variable any time you want.

This is okay:

int age = 15;
age = 39;
age = 21;

However, you can’t declare it a second time. This won’t work:

int age = 15;
int age = 21;
// Error!

Instead, only declare it as int age once, then use age = to change the value if
needed.

Now, just because you “labeled the box” age doesn’t mean it really has to hold
an age. There’s nothing to stop you from putting some other number in that
box:

int age = 2048;

That’s perfectly legal Java code, as 2048 is a perfectly reasonable number. It
might be okay for the age of a historical relic, but it’s not a realistic age for a
person. Setting that age for a person would be stupid, but there are no laws
against stupidity. That means it’s up to you to give variables names that make
sense. Renaming this variable to something like agelnYears might make more
sense, to avoid problems like the famous crash of the Mars climate orbiter,
where one set of programmers used metric units and the other used Imperial
units. Oops."

1. http://mars.jpl.nasa.gov/msp98/news/mco990930.html

http://mars.jpl.nasa.gov/msp98/news/mco990930.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ® 46

Java does try to keep you from mixing apples and oranges. Although it doesn't
know that you're using an int as a “human age,” it does know the difference
between things like an int, a float, a String, and so on. And it won't let you mix
up those types. If you've declared that a variable should hold an integer, you
can't try to store a String in it. This will throw an error:

int age = "0ld enough to know better"; // Error!

We tried to store a string of characters in an int. That won’t work, and Java
will complain. You can’t go the other way either. Here we're trying to store an
integer value (42) into a variable declared to hold a String:

String answer = 42; // Error!

But for common types such as numbers and strings, there are ways you can
convert things back and forth as needed, if it makes sense. For instance,
suppose you read a numeric value from something the user typed, and it was
given to you as a String named str. You can make it an int like this:

String str = "1066";

int value = Integer.parselnt(str);
// value is now set to 1066 as a number

So you can convert, but you have to do it yourself; Java won’t guess for you.
There’s a list of common type conversions, including ones we haven’'t covered
here, in Appendix 5, Cheat Sheets, on page 241.

Let’s try that out.

Plugin: BuildAHouse

I've got a plugin already set up for you; all you need to do is declare some
variables and you can give the /buildahouse command.

First make your way to the downloaded code, and into the BuildAHouse plugin:

$ cd Desktop

$ cd code/BuildAHouse/src/buildahouse
$ 1s

BuildAHouse.java MyHouse.java

You're going to edit the file MyHouse java, which is one small part of this whole
plugin (don’t look at the rest yet!). Right now it looks like this:

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BuildAHouse ® 47

BuildAHouse/src/buildahouse/MyHouse.java
package buildahouse;
public class MyHouse {
public static void build me() {
// Declare width
// Set width to the number of blocks
// Declare height
// Set height to the number of blocks

BuildAHouse.buildMyHouse(width, height);
}
}

If you try to compile and install that with ./build.sh like we did with HelloWorld,
you’ll get two errors:

$ cd Desktop

$ cd code/BuildAHouse

$./build.sh

Compiling with javac...

src/buildahouse/MyHouse.java:10: cannot find symbol

symbol : variable width

location: class buildahouse.MyHouse
BuildAHouse.buildMyHouse(width, height);

src/buildahouse/MyHouse.java:10: cannot find symbol

symbol : variable height

location: class buildahouse.MyHouse
BuildAHouse.buildMyHouse (width, height);

~

2 errors

And that’s your first mission: declare and set an int variable named width and
an int variable named height, and set them to something reasonable for a house,
perhaps no smaller than 5 blocks high and 5 blocks wide. Or maybe 10x10
if you're feeling spacious.

Delete those comment lines and replace them with your two variables for width
and height. Save the file, and then go ahead and run build.sh again:

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Stop and restart your server, then connect (or reconnect) your Minecraft
client. Pick a nice-looking spot in the Minecraft landscape, and type the
command /buildahouse.

http://media.pragprog.com/titles/ahmine2/code/BuildAHouse/src/buildahouse/MyHouse.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 48

Bam! You are now inside your brand-new, creeper-proof house, which was
built to the exact dimensions you specified with your width and height variables.
A right-click will open the door, by the way.

Different Kinds of Numbers

Java makes a distinction between integer whole numbers (with no decimal
point, like 8) and floating-point numbers with a fractional part (with a decimal
point), like 10.125.

For plain old whole numbers, you use an int, like we've seen.

Floating-point numbers can be float or double. A double is larger and can store
numbers much more precisely, but at the cost of needing more space and
power to manage. But computers are fast and have plenty of storage these
days, so almost everyone just uses double any time they need a double-preci-
sion, floating-point, fractional number.

When you type a number with a decimal point in Java, it assumes you've
typed a double:

3.1415 // assumed to be a double

But if you really need the number to be a float, you have to stick the letter f
on the number:

3.1415f // now it's a float, not a double.

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BuildAHouse ® 49

We'll need to use floats in just a minute to play a sound effect, because that’s
what Canary requires to set the volume and pitch of the sound. And in gen-
eral you might need a floating-point number more often than you think.

For example, let’s look at a simple division problem. In Java, you write division
using the “/” character (instead of <), so to divide the number 5 in half you'd
write 5/ 2. Depending on how you do the division, though, the answer might
surprise you.

e 5/ 2is 2 (just 2, nothing more)

e But 5 / 2.0 is 2.5, as you would expect
* 5.0/2.0isalso 2.5

Why is 5 divided by 2 equal to only 2? On a math quiz, that would be wrong,.
But we're not dividing real numbers here; we're dividing int numbers, so the
result is another whole number; another int. There are no fractions at all.

If you want the answer to include fractions, then at least one of the numbers
involved has to have a fractional part. That's why 5 divided by 2.0 (note the
extra .0) gives us the real answer of 2.5 (two and a half). This time, we're using
an int (5) and a double (2.0).

Sometimes you won't care about fractional parts or remainders (leftovers). If
you're calculating something that doesn’t have fractional parts, then all-int
math is just fine. Half of a Player or a Cow doesn’t make sense (unless you're
making hamburger). But if you need fractional answers, then at least one of
the numbers involved has to be a double or a float.

Here’s a handy list of several of the common math operators you might need:
Addition: + Subtraction: -

Multiplication: < Division: /

They work just as you'd expect, but there are some handy shortcuts.

int health = 50;
health = health + 10;

is the same as

int health = 50;
health += 10; // Same thing

Both result in health being set to 60.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 50

You can use expressions like += and -= to change the value of a variable
without having to repeat its name. Hey, less typing. I like it.”

If you're just adding 1 or subtracting 1, then there’s an even easier way of
typing it:
int health = 50;

health--; // Subtracts 1 from health
health++; // Adds 1 to health

In case you want to get really fancy and use more advanced math, including
trig functions like sine and cosine, constants like pi, and that sort of thing,
Java has libraries with all of that ready for you to use.

Strings of Characters

There’s more to the world than numbers, though. While your government or
school may know you as a string of numbers like #132-54-7843, your friends
call you by a name that’s a string of characters, like “Jack” or “Jill” or “Notch.”

In Java, you use a String type to handle strings of characters. We'll use strings
in Minecraft a lot, for names of players, names of files, messages—any kind
of text data that can change value, like a number does.

To specify a string in code literally, you put it inside double quotes, which
looks "like this". We'll use strings in our plugins and look more at what you can
do with strings as we go along.

You can add strings together using a plus sign:

String first = "Jack";
String middle = "D.";
String last = "Ripper";

String name = first + " " + middle + " " + last;
// Now name will be "Jack D. Ripper"

Note that strings are your data, which is different from the characters we use
to give Java instructions (our program code).

Try This Yourself

It's time to try out some of these ideas: we’ll make a simple plugin from
scratch.

2. The best programming languages make you type the fewest characters to get something
done while still making sense.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BuildAHouse ® 51

In the BuildAHouse plugin, I had a bunch of code that you didn’t see that actu-
ally did the house-building, and all you had to do was declare a few variables.
But now you're going to make an entire plugin from scratch, all by yourself.

To keep things a little on the simple side, at first you're just going to print
out some values. In fact, let’s call this plugin Simple.

First you need to make a Simple directory for the new plugin, with a src/ subdi-
rectory, a src/simple subdirectory, and with a Canary.inf, Manifest.txt, and build.sh,
just like we had in HelloWorldEZ.

I already provided a Simple directory for your reference down in Desktop/code,
but don’t look at that unless you get stuck. You're going to make your own
Simple right under Desktop.

Since you might be doing this a lot, I've made a shell script named mkplugin.sh
that will get you started.

In your Desktop directory, run the mkplugin.sh with the name of the plugin you
want to create, and it will make the directories underneath your current
directory and start you off with bare-bones Java code:

$ cd Desktop

$ code/mkplugin.sh Simple
$ cd Simple

$ 1s

Canary.inf Manifest.txt bin build.sh dist src
$ cd src

$ 1s

simple/

$ cd simple

$ s

Simple.java

The file Simple java lives up to its name; it doesn’t actually do anything.

You’'ll be adding some code in between where it says Put your code after this line
and ...and finish your code before this line, as shown at the bottom of the following
listing.

Open this file (Desktop/Simple/src/simple/Simple.java) in your text editor and get ready
to type.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: Simple

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 52

Simple/src/simple/Simple.java

packag
import
import
import
import
import
import
O import

public

@Com

e simple;

net.canarymod.
net.canarymod.
net.canarymod.
net.canarymod.
net.canarymod.
net.canarymod.

plugin.Plugin;

logger.Logman;

Canary;

commandsys.*;
chat.MessageReceiver;
api.entity.living.humanoid.Player;

com.pragprog.ahmine.ez.EZPlugin;

class Simple extends EZPlugin {

mand(aliases =

{ "simple" },

description = "Displays simple variable assignments",
permissions = { "" },

toolTip =

"/simple")

public void simpleCommand(MessageReceiver caller, String[] parameters) {
if (caller instanceof Player) {

Player me = (Player)caller;

// Put your code after this line:

}
}
}

// ...and finish your code before this line.

Don’t worry about all that extra program text yet. We'll talk about that more
as we go along. For now just put new code on the lines as shown, and it will
work fine. Here’s what you're going to do:

First, add two import statements at the top of the file, after the other import
lines at @. Type in the following:

import net.canarymod.api.world.effects.SoundEffect;
import net.canarymod.api.world.position.Location;

Next, after where it says // Put your code after this line: at @, do this:

1. Create an integer variable named myAge and set it to whatever your age is.

2. Make another integer variable named twiceMyAge and set it equal to myAge

multiplied by 2.

3. Create a float variable named volume and set it equal to 0.1.

4. Create a float variable named pitch and set it equal to 1.0.

http://media.pragprog.com/titles/ahmine2/code/Simple/src/simple/Simple.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: Simple ¢ 53

5. Create a double (floating-point) variable named “dayOnlo” and set it to
152853.5047. That’s how many seconds a day lasts on Jupiter’s moon, Io.*

6. Create a string named myName and set it to your name.

7. Display each of these values by sending a chat message to the player, using
me.chat(string msg). For example, to display your name, type this:

me.chat("My name is " + myName);

State each message with a string (like "My name is ") and the plus sign. Then
add your variable. Don’t forget the semicolon at the end of each statement.

Finally, add lines to play a sound effect at your location, using the float values
you just declared:

Location loc = me.getlLocation();
playSound(loc, SoundEffect.Type.GHAST SCREAM, volume, pitch);

Save the file and then run the build.sh in the Simple directory. (Make sure to
stop your server if you've left it running; some operating systems will throw
errors if you try to install fresh jars while the server is still running.)

$ cd Desktop

$ cd Simple

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Stop and restart your server, then connect from the Minecraft client. Run
your new command, /simple, and marvel at the messages on your console (and
the sound effect!).

Once that works, try changing the values for volume and pitch. Crank volume
up to 1.0f for a terrifying scream. For pitch, try a very low value, like 0.1f for
more of a growl, and higher (10.0f?) for a piercing shriek.

After you type the new value in the Java source code, don't forget to take
these steps:

Save the file.

Compile and install with ./build.sh.

Stop and restart the server.

Reconnect your Minecraft client.

Type /simple in the client and enjoy the display and sound effect.

Ol W N =

http://en.wikipedia.org/wiki/Io_(moon)
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 54

Here’s what mine looks like:

(No, I'm not really 99, but I'm not going to tell you my real age, or my bank
account number, or....)

If you need to see my code for hints, take a look at code/MySimple/src/mysimple/
MySimple.java.

Organize Instructions into Functions

So now that you can store all kinds of data in variables, next you need to
learn how to write instructions to do fun actions with all that data, from
printing messages to flinging flaming cows in Minecratft.

As you've seen, you can also tell Java to do things. In Java, you organize lines
of code (instructions) inside a pair of curly braces, like { and }. You give that
section of code a name, and those instructions will be run in order, one line
after another. We call that a function (sometimes we’ll call it a method; for
now they mean mostly the same thing).

Why do we bother with functions at all? Couldn’t we just have one big list of
instructions and be done? Well, yes, we could, but it can get very confusing
that way.

Think of a list of instructions and ingredients to make a cake with frosting:

¢ Blend together and bake
e Flour
e Butter

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Organize Instructions into Functions ® 55

* Sugar

e Milk

* Eggs

e Vanilla

e Cocoa powder

e Confectioner’s sugar

e Butter

e Milk

e Mix and spread on cake

Which part of the list is for the cake itself, and which is for the frosting? Maybe
the frosting part starts at the cocoa powder. Then again, maybe it's a chocolate
cake base with a vanilla frosting. The point is, it’s hard to tell. It might work
as is, but if you need to figure out what's going wrong it will be very hard.
And if you need to make any changes, it will be harder still. Suppose you
have some strange relatives who want their cake to have an orange-apricot
glaze instead of chocolate frosting (I did mention they were strange). Where
do you go in and make the changes?

Instead of one big list, suppose we had broken it up into two steps like this,
where each one lists the ingredients and steps for just that part of the cake-
making process:

* makeChocolateCake
* makeVanillaFrosting

Oh, now it’s easy to see. If there’s a problem with the cake, you know where
to look. If you want to do a different icing, you can easily change it to this:

¢ makeChocolateCake
e makeOrangeApricotGlaze

That’s pretty much the idea behind functions. They are a way to gather
instructions and data together into groups that make sense. But functions
have an extra fun ability: you can use the same function (list of instructions)
with slightly different data. For example, you could have one function named
makeFrosting and call it with different flavorings:

makeFrosting(flavor)
sugar
butter
mix in "flavor"
spread on cake

Then you could use that function, passing in slightly different data as needed:

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 56

makeFrosting(vanilla)
makeFrosting(chocolate)

That’s why we use functions: to make long lists of instructions (code) easier to
read and understand, and to reuse sets of instructions with slightly different data.

We snuck something else into this example. Our makeFrosting function isn’t
real Java code. When you write out an idea that’s codelike but isn’t really a
programming language, we call it pseudo-code. Programmers use pseudo-
code the same way artists sketch a picture before starting to paint—it helps
them to see the big picture.

You could say functions make programming a piece a cake. But back to
Minecraft.

Defining Functions in Java

Every bit of code we write in Java will be in a function; that’s how Java works.
We've seen functions already, right from the very first plugin.

Back in the HelloWorld plugin, we declared a function that Minecraft calls when
the game is running: helloCommand.

We call these kinds of functions in a plugin the entry points. These are the
functions that the Minecraft server will call when it needs to. You provide the
code, and the game will call it when needed.

In our helloCommand, we're calling other functions. Here’s the section from Hel-
loWorld:

public void helloCommand(MessageReceiver caller, String[] parameters) {
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);

}

There’s a call to something named instance(), a call to getServer(), and a call to
broadcastMessage().

Java knows you're calling a function because of the parentheses after the
name of the function. It will expect that someone defined a function based
on the name and it will give that function your message. We call the stuff you
pass to functions arguments. When arguments are given to a function, the
function knows them as parameters. We say the values are passed in or the
function is called with these values. All these words and phrases are referring
to the same concept.

For example, the getServer() function doesn’'t take any arguments. You still use
the parentheses characters, (and), so that Java knows it’s a function. That

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Organize Instructions into Functions ® 57

getServer() call returns something (it's actually a Server). Once we have that, we
can then call any of the Server's functions. In this case, we're calling the Server’s
broadcastMessage() function, passing in a string argument named msg. Take a
look at this line in action:

Canary.instance().getServer().oroadcastMessage(msg);

Canary.instance()

A

.getServer()

A

.broadcastMessage(msg);

To make it clearer, you could break up this chain of function calls into sepa-
rate pieces, which would look something like this:

instance = Canary.instance();
server = instance.getServer();
server.broadcastMessage(msg) ;

See? It’s just a set of function calls. With me so far?

You can define a function yourself. Here’s an example that defines a new
function named castintoBlackHole. Watch closely, because you’ll be doing this
on your own next.

public static void castIntoBlackHole(String playerName)
{

// Do something interesting with the player here...

}

There is a bit more noise here than in the cake example. Let's see what all
this stuff means.

e public means that any other part of the program can use it, which for now
you want to be the case.

e static means you can call this function all by itself (not like a plugin; we’ll
see the difference and what that means in the next chapter).

¢ poid means this function is going to run a couple of instructions, but not
give you any data back—it won’t “return” any values to the caller.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 58

e castintoBlackHole is a name we just made up; it is the name of the func-
tion, and the () characters indicate that it is a function and will take the
arguments we've listed. You always need the parentheses, even if the
function doesn’t take any arguments.

In this case, it takes one argument we named playerName, which it expects
to be a String. For each argument your function accepts, you need to specify
both a variable name and its type. Your function can take multiple arguments;
you use a comma to separate each pair made up of the type and variable (like
we did back in the helloCommand in HelloWorld).

In between the braces, { }, are where the code for this function goes. You can
put as much code in a function as you want, but a good rule of thumb is to
not make it any longer than maybe 30 lines. Shorter is always better; if you
find yourself writing very long functions, you will want to break those up into
several smaller functions to help make the code easier to read.

Here’s an example of a function that returns a value; it will triple any number
you give it:

public static double multiplyByThree(double amt)

{
double result = amt * 3.0;

return result;

}

This function calculates a result and uses the return keyword to return that
value to the caller. You would call the multiplyByThree function and assign the
returned value to variables like this:

double myResult = multiplyByThree(10.0);

double myOtherResult = multiplyByThree(1.25);

Now myResult will be 30.0, and myOtherResult will be 3.75.

Try This Yourself

You're going to write a function named howlong() to calculate how many seconds
you've been alive:
public static long howlong(int years) {

// Write this function...

}

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Organize Instructions into Functions ® 59

The function will take a number of years and return a number of seconds as
a long (an extra-big int). We'll cheat a bit to make this easy, and convert years
to seconds. (See the footnote if you need a hint.)*

You’'ll add this new function to the Simple plugin, and call the function to print
out its value just like we did with your name and age.

Define the function where the top arrow is pointing:

17 1MPOUrt NEL. CAndrynmnou.dpiL.worLu.position. Locacwaon,;
18 import com.pragprog.ahmine.ez.EZPlugin;

19

20 public class MySimple extends EZPlugin {

21 -+ Add function definition here
22 @Command(aliases = { "mysimple" },

23 description = "Displays Andy's simple var
24 permissions = { "" },

25 toolTip = "/mysimple")

26 public void mysimpleCommand(MessageReceiver caller,
27 if (caller instanceof Player) {

28 Player me = (Player)caller;

29 // Put your code after this line:

30

31 int myAge = 99;

32 int myAgeDoubled = myAge * 2;

33 float volume = 0.1f;

34 float pitch = 1.0f;

35 double dayOnIo = 152853.5047; ndcallthers
36 Stri2E_TXﬂETE_E—:ADH¥”H““%“7'”"-

37

38 me.chat("My age " + myAge);

39 me.chat("My age doubled " + myAgeDoubled);

And add the call to the function howlong down where my cursor is, at the second
arrow. Assign it to an extra-big integer (a long) and pass in an age (I'll use 10
here) like this:

long secondsOld = howlong(10);

Then print it out to the player just like the rest of the chat() calls do.

4. Inother words, multiply the number of years by the number of days in a year, multiplied
by the number of hours in a day, multiplied by the number of minutes in an hour,
and finally by the number of seconds in a minute.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 60

If I compile and install it with ./build.sh, stop the server and restart it, and then
run the /simple command in Minecraft, my test with 10 years gets me
315,360,000 seconds:

$ cd Desktop

$ cd Simple

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Did you get the same answer? You can see the full source code that I put
together at code/Simple2/src/simple2/Simple2.java.

Note that there are a couple of different ways to accomplish even this simple
function. There usually isn’t just one “correct” way to write code.

That'’s a good start, but there’s more to Java than just variables and functions.
The Java language has certain special keywords that you can use to direct
how and when to run various bits of code. We've seen some of these already,
including public and static, which describe the code. Now we’ll look at keywords,
including if, for, and while, that let you control how code is run.

Use a for Loop to Repeat Code

Computers are much better at repetitive tasks than humans are; you can tell
the computer to do something ten times in a row and it will do exactly that,
ten times, a hundred times, a million times, whatever you want. One way to
do the same thing a bunch of times is to use a for loop. for is a Java keyword
that lets you loop over a section of code a fixed number of times.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use an if Statement to Make Decisions ® 61

The for loop is a basic control structure in Java—a way to control the order
of execution of your lines of code. If you need to make a bunch of blocks or
spawn a lot of creepers in a Minecraft world, you’ll use a for loop. If you need
to loop through all the players that are currently online, you'll probably use
a for loop (although there are nicer ways of doing that, which we’ll see a little
bit later).

For example, this snippet of code from the guts of a plugin will spawn ten
pigs at your location. Saddle up!

//... somewhere inside a plugin:

for (int i=0; i < 10; i++) {

spawnEntityLiving(location, EntityType.PIG);
}

In this case, the for statement will run the instructions in its braces ten times,
so spawn will be called ten times, creating ten pigs.

The for statement has three parts inside the (), separated by semicolons. Here’s
what they do:

int i=0;
The first part declares and initializes the looping variable. Here we’ll use
i as our loop counter, and it always starts off at 0—you’ll see why later,
but Java always counts starting at O.

i< 10;
The loop test. This tells us when to keep going with the loop (and more
importantly, when to stop). This loop will keep running the code in the
following braces as long as i is less than 10. Right now, that would mean
forever, so we need the third part:

i++;
The loop increment. This is the part that keeps the loop moving along.
Here we are incrementing the variable i by 1 each time through the loop.
Remember, i++ is shorthand for i=i+1. Either way, you are taking the value
of i, adding 1 to it, and saving that back as the new value of i (you can
use that kind of shortcut anywhere, by the way, not just in loops).

Use an if Statement to Make Decisions

An if statement lets you make decisions in code and optionally run a piece of
code depending on whether a condition is true. This is how you make a
computer “think.”

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 62

It’s just like the real world. We run on “if” statements all the time. If your age
is >= 16, you are allowed to drive. If the door is unlocked, you can open it, or
else you cannot. If the command given to Minecraft is equal to "hello", then
send a message. If your health drops to zero, you're dead.

This is what it looks like in Java:

if (something) {
// run this code...

}

The part in parentheses (something) can be anything that turns out true or false;
in other words, a Boolean condition (more on that in just a second).

If you need to, you can also put code in to run if something is true and
specify what to run if it’s false:
if (something) {
// run this code if something is true
} else {
// run this code if something is false

}

For example, here’s a fragment of code that will say something different
depending on whether the String in the variable myName contains Notch.

if (myname.equalsIgnoreCase("Notch")) {
say("Greetings from Notch!");

} else {
say("Notch isn't here anymore.");

}

if statements (with or without the else) are critical to programming: that’s how
you can get the computer to make decisions and pretend to “think.” Pretty
powerful stuff, but really simple to use.

Compare Stuff with Boolean Conditions

if statements decide what to run based on whether
something is true. But just what is true?

Besides numbers and strings that we've seen, you can
also make a variable that keeps track of whether some-
thing is turned on, like a toggle switch. In Minecraft, we’ll
use this to determine all sorts of things: if a player is on
the ground or not, if a string matches another string,
whether to use a game event or ignore it, and much more.

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Compare Stuff with Boolean Conditions ® 63

Java calls this kind of variable a boolean,” and it can be assigned true or false,
or you can give it math expressions using any of these operators, all of which
return either true or false:

Equal to (two equals signs)

Not equal to

Not (so “not true” is false, and “not false” is true)
< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

&& And (true if both things are true)

[l Or (true if either thing is true)

For example, given these variables

int a = 10;

int b = 5;

String h = new String("Hello");
boolean result = true;

boolean badone = false;

Java will figure out these comparisons:

® a==10 is true

* b ==06 is false

® a<20is true

* b>=5is true

* a > 100 is false

e result is true

e lresult is false (pronounced “not result”™—“not” returns the opposite of a value)
e result && badone is false (pronounced “and”—true only if both are true)

e result || badone is true (pronounced “or’—true if either is true)

But this next one won’t do what you think it should; it will not be true:
h == "Hello"; // Gotcha!

That one is tricky. For strings and objects (more on that in the next chapter),
use the equals function instead of the double equals sign (==), like this:

h.equals("Hello"); // 1s true

5. Named for George Boole, the British mathematician, who came up with these ideas in
the 1800’s.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 4. Plugins Have Variables, Functions, and Keywords ¢ 64

h.equalsIgnoreCase("hELLO"); // is true

Use a while Loop to Repeat Based on a Condition

You use a for loop when you need to run a piece of code a fixed number of
times. But what if you aren’t certain just how many times you need to loop?
What if you wanted to loop as long as needed, as long as some other condition
is still true? In that case, you’d use a while loop. A while loop will keep executing
a piece of code as long as the Boolean condition is true:

while (stillHungry) {
// ...
// Something better set stillHungry to false!

}

In a way, it’s kind of a mix between an if statement and a for loop: it loops
over code the same way a for loop does, but it keeps looping as long as the
condition is true, testing the condition like an if does.

And yes, if you forget to change the value to false, while will continue forever,
and your entire Minecraft server will be stuck until you kill it or reboot or
lose power, whichever comes first.

Try This Yourself

Now it’s time for you to create a loop yourself. Let’s go back to MyHouse java, in
~/Desktop/code/BuildAHouse/src/buildahouse, and instead of creating just one house
with this call:

BuildAHouse.buildMyHouse(width, height);

write a for loop that will run ten times, with the buildMyHouse call in the body
of the for loop. That will make ten houses. Your own mini city!

Edit MyHouse.java and add your for loop, and then build and install the plugin
as usual:

$ cd Desktop

$ cd BuildAHouse

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Stop and restart your server, connect with your client, and type /buildahouse
again. You now have a set of ten houses!

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ® 65

Next Up

In this chapter you've learned something about Java syntax, from parentheses
to squiggly brackets and semicolons. You know how to declare Java variables
and use them to store important information. You can write Java functions
that will act on your data, and you can control functions with if, for, and while
statements.

Next we’ll look at what happens when you package variables and functions
together to make objects—the heart of a large system like Minecraft. Minecraft
objects let you create plugins to manipulate everything in the Minecraft
environment, from creepers to cows. Let’s see how.

Your Growing Toolbox

You now know how to:

¢ Use the command-line shell

Build with Java, javac

Run a Minecraft server

Deploy a plugin

Connect to a local server

Use Java variables for numbers and strings
Use Java functions

Use if, for, and while statements

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter we'll cover a bunch of new Java language tools:

« Use objects: bundles of variables and functions
« Use the right import for a package
» Use new to create objects

CHAPTER 5

Plugins Have Objects

You may have heard of object-oriented programming or that Java is an “object-
oriented language.” That’s what we're talking about in this chapter: using
objects to represent elements of the Minecraft game, from players to cows.

You can do anything in code that you could do in the game, and then some.
This comes down to working with mostly three kinds of things: blocks, items,
and entities.

Everything in Minecraft Is an Object

The Minecraft world is filled with blocks. Every location in the game has a
block, which might be made of air or another material. Blocks can exist in
the world and in a player’s inventory. Anything in a player’s inventory is
represented by an item.

In this world of blocks you have entities, which includes players, creepers,
and cows. Items in motion are also entities—an arrow in flight or a snowball
or a potion that’s being flung. And all of these are objects.

Everything in our plugins is an object: locations, blocks, entities, cows,
creepers, players, and even the plugin itself. All objects, all the time.

So now the real fun starts! You have variables holding data, and you have
instructions expressed as functions, including some control statements to
repeat bits of code or make decisions, and now we’ll see how to put them all
together into objects.

Try This Yourself

Let’s try a little demonstration of objects in Minecraft. In the downloaded code
there’s a plugin called NameCow. Go there now and install that plugin, as shown
in the following command line session.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 68

$ cd Desktop

$ cd code/NameCow

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

Stop and restart your server, connect your client, and you'll be able to run
the new namecow command. This command will spawn a new cow and give it
a name. In the Minecraft client, type the command followed by that cow’s
name:

/namecow Bessie
/namecow Elise
/namecow Babe

You'll see these cows appear in the game, and when you look at each one,
you’'ll see its individual name appear.

This plugin spawns a new Cow object each time you run it. Each cow you
spawn has internal variables that keep track of its unique state: the cow’s
own name, its position in the Minecraft world, its health, and so on.

While it’s important that each cow is represented by its own separate object,
that’s not a good enough reason to use objects. So why do we use objects at
all? There is a deeper reason.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Why Bother Using Objects? ® 69

Why Bother Using Objects?

Imagine you are a god of your own universe. You have spent a few eons
arranging every quark, every atom, every molecule, all the way up to planets
and galaxies, just the way you want it. Now the whole thing spins up, and
you're responsible for every single subatomic particle in the whole universe,
all at once. Even as a godlike being, trying to keep the universe going by
dealing with every electron or every quark or even every molecule is just too
much work (not to mention incredibly boring).

So instead, you deal with problems on the scale in which they occur. If it’'s a
problem with a planet in the wrong spot, you move the planet. If you need to
fiddle with a galaxy, you fiddle with the galaxy—mnot with every planet, and
certainly not with every life form on every planet in every system.

Although it might sound grandiose, creating a program is very much like that.
You're a very powerful creator of your own little universe. Maybe not exactly
godlike, but you do have to face that same issue of dealing with things at a
very low level, like atoms or molecules, and at a very high level, like creatures,
mountains, planets, and galaxies. All at once. When programming, you often
have to zoom in to “atoms” and zoom out to “galaxies.” They're all connected
and have to make sense.

That’s why we write code using objects. It's a way to organize data (in variables)
and behavior (in functions) so that when we want to deal with a cow, we can
treat it like a cow and not have to deal with each of the millions of atoms that
make up said cow—or a biome, or a world, or a torch.

Even better, we can write code so that only a Cow has functions and data a
cow needs. There’s nothing worse than having assorted functions spilling out
all over the place—you might end up with a torch that moos or a cow that
lights up. Worse still, you’ll end up with a huge pile of functions where you're
not really sure which function can work with which piles of data.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 70

For example, a Cow object in Minecraft has a lot of functions you can call.
Here are a few of them:

e teleportTo(Location location)
o setFireTicks(int ticks)

e setAge()

* getAge()

e swingArm()

It also maintains some internal state: some variables to keep track of that
individual cow’s location, whether it’s on fire, its age, and so on.

These are all fine things you can do with a Cow object. But they wouldn'’t all
make sense for a player, or an arrow, or a tree.

You want to keep cow things in the Cow object, arrow things in the Arrow object,
and so on. If you don’t, then things can get awfully confusing awfully fast,
and you might end up writing a pile of code that you can no longer understand
or work with. So this is really just a matter of good hygiene, like keeping milk
in the milk carton in the fridge and not storing it in the pretzel bag in the
closet. You don’t even want to mix corn chips with potato chips, to continue
with this metaphor.

Keeping separate things separate in different objects is the easy part.

The hardest aspect of programming is this problem of having to deal with
very low-level details and very high-level details at the same time. We call
these levels of abstraction. Let’s face it: when you're writing code to deal with
a player in Minecraft, it’s not the actual person playing the game. Somewhere
there is an actual person, sitting there, sweating, eating chips and listening
to loud music. Your piece of code is an abstract representation of that real-
life player; an abstraction that includes the data and behavior you need for
the game.

And just as in the real world, each abstraction can contain parts. So you can
choose to focus on molecules or planets as you need to—or in software, on
the molecule objects or planet objects. You can zoom in and out to the level
you need to be at, and work with the parts you want.

Let’s take a closer look at what that means in Minecraft and Java.

Combine Data and Instructions into Objects

Suppose you were to write a game like Minecraft from scratch. You'd want to
have a bunch of players in the game. Each one would have its own name,

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Combine Data and Instructions into Objects ® 71

inventory, health points, and so on, but the structure of each player would
be the same.

That is, every player object would have the same collection of variables (name,
health, location, and so on) and the same functions that you’d want to run
(set this player’s health, teleport the player to a new location, that sort of
thing). That’s where objects come in. You'd create an object in Java to repre-
sent each player in the system. You’d write code to do things to a player, and
that code would work no matter which specific player you were using at the
time. That’s exactly what the Minecraft folks did. Here’s how the magic works.

In Java, you can define a pile of variables and a bunch of code that uses those
variables, sort of like defining a recipe. You can then create and use an object
that’s built from that recipe. Java calls this kind of recipe a class. From that
class recipe, Java will make running objects. Look at the following figure;
here you have a few variables and some functions for a sample Player class,
and some objects it can make.

Player

int health;

String name;
Location location;
setHealth();
teleportTo();
getName();

B S A class is like a recipe...

...that can make a bunch of objects;
all have the same functions,
but each with their own values:

int health=6;

; _ . String name="Kim";
int health=100; Location=340,76,225

String name="Fred";
Location=100,65,250 int health=56;

String name="Pat";
Location=10,82,123

It’s just like building objects from Lego blocks: the blocks may all be the same,
but when you follow the printed instructions that come with the kit, you can
build a spaceship.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 72

For instance, Minecraft keeps a pile of interesting data and functions related
to each player who'’s online. Its “recipe” is defined by the class net.canary-
mod.api.entity.living.humanoid.Player, which builds objects for an individual Player.
Note that before you can use Player in your code, you must add an import
statement at the very top of the file—in this case you’d do an import net.canary-
mod.api.entity.living.humanoid.Player.

So how can we get at one of these player objects?

The Minecraft server knows who’s online at any point, so we can ask the
server for a list of Player objects. Or we can ask for a specific user by name,
and it will give us a single Player object. Here’s how.

Within a plugin, you can get access to the server using the function named
Canary.getServer(). That will give you an object representing the server. Once you
have the server object, you can ask it for the player you want. You use getPlayer
and call it with the name of the player you want.

That sequence of instructions looks like the following. (We're going to look at
this in bits and pieces first, and end up with a complete running example.)

You start off with the imports that define the class recipes you’'ll be using:

// Up top

import net.canarymod.Canary;

import net.canarymod.api.Server;

import net.canarymod.api.entity.living.humanoid.Player;

Then later, in your plugin code, you can use variables of those types (Player
and Server):

Server myserver = Canary.getServer();
Player fred = myserver.getPlayer("fredl1024");

Assuming that “fred1024” is online at the moment, we now have a variable
named fred that represents the Player object. If Fred wasn’t online, then the fred
variable would be equal to the special value null, which is Java-speak for “there
ain’t one”—in other words, fred is not set to any object at all.’

Objects have parts. They contain stuff. An int, like 5, is just the number five.
It can’t do anything else; it can’t store anything else alongside it. It just is
what it is. But objects have functions and variables that you access with a
period ().

1. If fred was null and you tried to execute a function from fred, like fred.isSneaking(), you’d
get an error and your plugin would crash.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Combine Data and Instructions into Objects ® 73

Each object recipe in Java lives in a package, like java.util or net.canarymod.Canary, or
something like that. You have to declare this package in an import statement at the
very top of the Java source code file.

If you forget, you'll get an error from javac that says something like “cannot find symbol”.

You need to look in the Canary documentation or the Java documentation to find the
full package name. We’'ll use a lot of the common ones in our examples, for Player,
Server, Location, Entity, and various Java libraries. For your convenience, these are all
listed in Appendix 7, Common Imports, on page 253.

So with fred in hand, you can get—and set—data for that player, using the
period () to indicate which function or variable you want inside that object.
Here are a few snippets of code that show what that looks like:

// Is fred sneaking?
boolean sneaky = fred.isSneaking();

// Hungry yet?
int fredsHunger = fred.getHunger();

// Make him hungry!
fred.setHunger(0);

// Where's fred?
Location where = fred.getlLocation();

The Player object has a function named isSneaking(), which returns a true or false,
depending on whether that player is in sneaking mode.

Remember, that’s the kind of thing you can use in an if statement:

if (fred.isSneaking()) {
fred.setFireTicks(600); // Set him on fire!
}

There’s also a getHunger() function that returns an int telling you how hungry
that player is. You can set the player’s hunger level as well. The last snippet
here shows how to get the player’s current location in the world.

As you might guess, objects contain internal variables that their functions
work with. For instance, in these examples the Player object for Fred has a
location stored internally. We can get the value of Fred’s location, we can set
a new value, but at all times Fred has his own internal copy of his current
location.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 74

You can also run some interesting commands. For instance, you can execute
a command as if you were Fred:

fred.executeCommand("tell maryl79 I love you")

Now Mary will think that Fred sent her a love note. Let’s play with Fred’s
Location and see what other mischief we can create.

Location where = fred.getLocation();

Now the variable we named where will point to a Location object that represents
Fred’s location in the world.

Making Objects
You can also make a new location from scratch:

double x, y, z;

x = 10;
y = 0;
z = 10;

Location whereNow = new Location(x, y, z);

Or do it in one step:

Location whereNow = new Location(10, 0, 10);

And that’s how to make a new object in Java: by using the new keyword.

When you use new to create an object, Java will create the object for you and
run its constructor: a function that’s named the same as the class (for instance,
public Location()). The constructor gives you the chance to set up anything in the
object that needs setting. It doesn’t return anything and isn’t declared with
a return type; Java automatically returns the new object after you've done
your setup.

We'll discuss how to make our own object definitions a bit later in the book,
but for now we’ll use what Minecraft has given us plus our plugin skeleton.

And now armed with a location, you can whisk Fred away:
fred.teleportTo(whereNow) ;

Suddenly Fred will find himself...suffocating in bedrock (because y in this
location is zero). Ouch.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: PlayerStuff ¢ 75

Plugin: PlayerStuff
Let’s play around with a Player a bit more.

We're going to install the PlayerStuff plugin and change some of the object
properties for players in the Minecraft world.

In the Player object, there are all kinds of interesting functions to get information
about a player, and to set those values as well. Here are a few we’ll look at:

chat()

getWorld()

getDisplayName() (can set it too)
getExperience() (can set it too)
getHunger() (can set it too)
getHealth() (can set it too)
isSleeping()

getLocation()

We can send a message to a player, get some values, and more. Here’s code
for a full plugin that demonstrates some of these features. It provides the
command "/whoami". For more advanced plugins, this approach could be a
great way to debug in-game objects by displaying information about Minecraft
objects. When you're writing code and it’s not working, printing out a couple
of values of different variables is a great way to find out what’s going on.

Here’s the code, which is in the plugin directory Desktop/code/PlayerStuff. The full
plugin has the necessary Canary.inf file and such:

PlayerStuff/src/playerstuff/PlayerStuff.java

package playerstuff;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.api.world.position.Location;
import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import com.pragprog.ahmine.ez.EZPlugin;

public class PlayerStuff extends EZPlugin {

@Command(aliases = { "whoami" },
description = "Displays information about the player.",
permissions = { "" },
toolTip = "/whoami")

http://media.pragprog.com/titles/ahmine2/code/PlayerStuff/src/playerstuff/PlayerStuff.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 76

public void playerStuffCommand(MessageReceiver caller, String[] parameters) {
if (caller instanceof Player) {
Player me = (Player)caller;
String msg = "Your display name is " + me.getDisplayName();
me.chat(msg);
me.getWorld().setRaining(true);
me.getWorld().setRainTime(100); // 5 secs
float exp = me.getExperience();
int food = me.getHunger();
float health = me.getHealth();
Location loc = me.getlLocation();

me.chat("Your experience points are " + exp);
me.chat("food is " + food);
me.chat("health is " + health);
me.chat("you are at " + printLoc(loc));
me.chat("water falls from the sky ");
}
}

}
Install that now:

$ cd Desktop
$ cd code/PlayerStuff
$./build.sh

Restart your server and reconnect your Minecraft client.

What happens when you type the command "/whoami* from the Minecraft client?

Here’s what I get:

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ¢ 77

Let’s walk through the code and see what’s going on. We start off getting the
player object me, and then the fun begins. Using the me object, we get the
player’s name and then send that as a message back to that player.

Then just for fun we’ll make it rain (or snow) on the player by setting raining
to true, and set the rainy time to 5 seconds with setRainTime(100).”> There are 20
server ticks per second, so 100 server ticks will be about 5 seconds.

Next we’ll get the experience points for the next level and the food level, and
send those as a message back to the player. You can play around in this
world for a while, and run "/whoami" to see if your food and experience have
changed any.

It’s just that simple: me is an object of type Player, and we can get values for
various player values and send commands to me to do playerlike things.

That’s what objects are for.

Try This Yourself

In the screenshot, you'll notice I also printed out a line that says whether or
not you are sleeping. Add a local boolean variable in PlayerStuff and set it to a
true or false depending on whether the player is sleeping or not, and then create
an appropriate message to display either way.

Build the plugin with build.sh and try it out.

You can see how I did it in code/MyPlayerStuff/src/myplayerstuff/MyPlayerStuff.java.

Next Up

In this chapter you've seen how to use Java objects: how to import a Java
package and class, how to use new to create objects, and how to change
properties of objects that will affect the game. We'll need all of that for the
following chapters.

In the next chapter we’ll take a closer look at how plugins are wired into
Minecraft, how to add commands, and how to find things in the Minecraft
world.

2. You could make it stop by setting raining to false instead.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 5. Plugins Have Objects ® 78

Your Growing Toolbox

You now know how to:

e Use the command-line shell

¢ Build with Java, javac

¢ Run a Minecraft server

¢ Deploy a plugin

¢ Connect to a local server

¢ Use Java variables for numbers and strings
¢ Use Java functions

e Use if, for, and while statements
e Use Java objects

¢ Use imports for Java packages
e Use new to create objects

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter we'll ook at how plugins are constructed, and add
these abilities to your toolbox:

+ Add a command to a plugin

« Add new command annotations and code
- Work with Minecraft coordinates (Location)
« Find blocks or entities (Blocklterator)

CHAPTER 6

Add a Chat Command,
Locations, and Targets

How Does Minecraft Know About Your Plugin?

We've been using a bunch of objects in the Minecraft code. For example, you
know that a player is represented as a Player object and the server is a Server
object.

So it shouldn’t be too surprising to realize that our plugins are, in fact, Plugin
objects. Canary has kindly defined a basic “recipe,” a basic Plugin class that
it knows about. I've added an additional EZPlugin class to make things a little
easier. Our job, as plugin writers, is to provide our own plugin code that fits
into that framework.

As we've seen, the first line of a plugin declares the plugin’s name and then
adds the magical phrase extends EZPlugin:

import net.canarymod.plugin.Plugin;
import com.pragprog.ahmine.ez.EZPlugin;

public class MyFavoritePlugin extends EZPlugin {

That makes Plugin and EZPlugin parents of your class MyFavoritePlugin, just like
the examples in the last chapter.

The Minecraft server already knows how to work with a Plugin, and since that’s
your plugin’s parent, it now knows how to work with your plugin—even though
your plugin didn’t exist when Canary was created. It's counting on the fact
that you’ll write a couple of functions that it knows how to call.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

o0

Chapter 6. Add a Chat Command, Locations, and Targets ¢ 80

In addition to the plugin code itself, Canary needs a configuration file for the
plugin, named Canary.inf. You saw a description of this back on page 35, while

we were building plugins the first time. It tells the server some basic informa-
tion about your plugin, so that the server can load it.

With that configuration file and your code, the Minecraft server can run your
plugin just like any other part of the game.

Plugin: SkyCmd

We're going to create a brand-new plugin called SkyCmd. In it, we’ll create a
command named sky that will teleport all creatures (not players) 50 blocks
up into the air. Very handy at night with skeletons and creepers about.

Here’s the whole source file to the plugin:

SkyCmd/src/skycmd/SkyCmd.java

package skycmd;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.entity.living.EntitylLiving;
import java.util.List;

import com.pragprog.ahmine.ez.EZPlugin;

public class SkyCmd extends EZPlugin {
@Command(aliases = { "sky" },
description = "Fling all creatures into the air",
permissions = { "" },
toolTip = "/sky")
public void skyCommand(MessageReceiver caller, String[] parameters) {
if (caller instanceof Player) {
Player me = (Player)caller;
List<EntityLiving> list = me.getWorld().getEntityLivingList();
for (EntityLiving target : list) {
if (!(target instanceof Player)) {
Location loc = target.getLocation();
double y = loc.getY();
loc.setY(y+50);
target.teleportTo(loc);

http://media.pragprog.com/titles/ahmine2/code/SkyCmd/src/skycmd/SkyCmd.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Handle Chat Commands ® 81

Compare this to our original, very simple HelloWorld.java file. Notice right at the
top, the package statement and later the public class statement now each refer
to SkyCmd instead of HelloWorld.

Let’s take a closer look at how a plugin handles a chat command like /sky.

Handle Chat Commands

The bit with the @Command at @ tells the system that this function, skyCommand,
is responsible for handling the /sky command. That is, when the player types
the /sky command, your skyCommand function will be called.

The first thing we need to check is a little awkward; it turns out that the
MessageReceiver that gets passed to us here may not be a Player. It could be a
Player object, or who knows what else. We want to make sure it’s really a Player,
so we'll check for that explicitly at @, using the Java keyword instanceof. This
tests to see if the thing passed in is really a Player. If it is, then we’re going to
do the bulk of the command starting at @. (If it’s not a Player, then it’s probably
a console command, if you want to allow those.)

The skyCommand function begins with another bit of magic, just like we saw
with parent/child recipes at the end of Chapter 5, Plugins Have Objects, on

just a MessageReceiver or any other parent or child), we can convert it to the
type Player, using a cast operator.

So the expression (Player) caller returns the variable caller, converted with a cast
operator to the type Player so you can assign it to the variable me. It sounds
messy, and it is a bit, but it’s also something you can just copy and paste,
as we’ll be using this little recipe in almost every command plugin to get a
Player object.

Now that we have a real Player object referenced by me, we can get the list of
all living entities with me.getWorld().getEntityLivingList(), which will get us all the
living entities in this world and return them in a List that we’ll go through with
a for loop.

We'll go over the details of lists in the next chapter, but first we’ll look at how
Location objects work. In this case, we're setting the variable target to each entry
in the list of entities as we go through the for loop. If the target is not a fellow
player, then we want to fling it skyward, which we do by changing its location
with a teleportTo().

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 6. Add a Chat Command, Locations, and Targets * 82

Location objects are important—that’s how you get and set the coordinates of
anything in Minecraft. Here’s how we’ll manipulate locations to fling the
creatures up in the air.

Use Minecraft Coordinates

A Location stores three coordinates: x, y, and z, as the following figure shows.

‘+high (255)
Sea level (64)

-low(0)

_north/ vh\ "
Z
+sout£1/ +east

The x value goes west (negative) to east (positive), the z-coordinate goes north
(negative) to south (positive), and y goes down (negative) to up (positive), with
a y value of O being the bottom layer of bedrock and 64 being sea level. That
means that to make a player or other entity fly up in the air, you need to add
some to the y value.

We'll get each target’s current y value from loc and save it as y. Next we’ll
change the value in loc by adding 50. Here’s the fun part: by calling target.tele-
portTo(loc) we tell the target to teleport itself to this new location.

Whew! That’s a lot of stuff in a few lines of code. But give it a shot and compile
and install it using build.sh just like we’'ve been doing:

$ cd Desktop
$ cd code/SkyCmd
$./build.sh

Stop and restart your server, and try out the new command /sky for fun. Make
sure you are in survival mode instead of creative mode,' and wait for night
to fall and the creepers to come....

1. In the Minecraft game, you can do this by typing /gamemode c for creative or /gamemode
s for survival.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use Minecraft Coordinates ¢ 83

Try This Yourself

Well, that was fun! Let’s try something a little different: adding a new command
to this plugin, all on your own. Add a new command to the SkyCmd plugin that
creates ten squid—a squid bomb.

You'll add annotations for a command named "squidbomb", and you’ll use a for
loop and one of our helper functions.

The spawnEntityLiving is documented to take a location and the thing you want
to spawn:

spawnEntityLiving(newloc, EntityType.SQUID);
spawnEntityLiving returns an Entity, but we won’t be using that right now.

For instance, to spawn a squid, you need to import net.canarymod.api.entity.EntityType
up at the top of the file. Then later in your function, pass EntityType.SQUID to
the spawnEntityLiving function. With that we can make a simple “squid bomb”:

import net.canarymod.api.entity.EntityType;
//... other parts not shown

// Spawning some squid. Derp.

for (int i = 0; i < 10; i++) {
spawnEntitylLiving(location, EntityType.SQUID);

}

Use that in your new command in our SkyCmd plugin. Don't forget to do the
following:

¢ Add your new command (squidbomb) to SkyCmd using the @Command annota-
tion as we've seen previously, and your new function.

e Recompile and install using build.sh.
e Stop and restart the server to pick up the change.
You'll need to add a new command annotation, which looks like this:

@Command (aliases = { "squidbomb" },
description = "Drop a fixed number of squid on your head.",
permissions = { "" },
toolTip = "/squidbomb")

Now, that’s a little bit boring—all the squid kind of pile on top of each other.
It might be better to randomize the location for each squid. Java provides a
function, Math.random(), that will give us a random number that ranges from O
up to (but not including) 1.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 6. Add a Chat Command, Locations, and Targets ® 84

To get a random number from O up to 5, just multiply Math.random() by 5. So
for instance, to get a new x-coordinate you might use an expression like
loc.getX() + (Math.random() * 5). When multiplying and adding, parentheses are
usually a good idea—in this case we want to multiply the random O..1 by 5,
then add that to the original x.

Now it’s your turn again: improve the squid bomb by making a new location
based on the player’s location that you already have, and add a bit of random-
ness to the x- and z-coordinates. To get the squid to drop on you from above,
add 10 to the y-coordinate.

Try going through this exercise all by yourself first. In case you get stuck and
need some help, I made a whole new plugin for the squid bomb. You can see
my code and config file in code/SquidBomb.

Find Nearby Blocks or Entities

Canary provides a very handy feature in net.canarymod.Blockiterator. A Blocklterator
lets you find all the blocks along a line in the game. Most useful is probably
the version where you pass in a LineTracer (made from a Player) and a boolean,
which is declared in the Canary API like this:”

public BlockIterator(LineTracer tracer, boolean include air)

That gives you a Blocklterator object, which you can use to retrieve blocks along
the line of sight from that entity. The boolean flag says to include Air blocks,
and it works like this:

BlockIterator sightItr = new BlockIterator(new LineTracer(me), true);
while (sightItr.hasNext()) {

Block b = sightItr.next();

// do something with this block, b
}

You might check each block along this player’s line of sight and find the first
block that isn’t Air. That would be the player’s “target.” Or you could set fire
to each block along the way and then turn that target into Lava.

Here’s a plugin that does exactly that.

Plugin: LavaVision

This plugin runs a Blocklterator for the player, and checks each block along the
way, setting a flame effect. The first block that isn’t Air is the target, so we’ll
set that to Lava.

2. This is a recent addition to CanaryMod, and doesn’t yet appear in their docs.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: LavaVision ¢ 85

For extra punch, I've added an effect on each block we traverse:

spawnParticle(b.getlLocation(), Particle.Type.LAVASPARK) ;
The LAVASPARK gives us a nice set of sparks along our line of sight.

I've also added a sound effect, using the playSound helper function, which takes
a Location, and a Sound (and optionally floats for volume and pitch if you want).

playSound(b.getLocation(), SoundEffect.Type.EXPLODE);

There’s a list of possible effects in the Canary documentation under
net.canarymod.api.world.effects.SoundEffect.Type. I picked EXPLODE for drama. (Option-
ally you can add the volume and pitch as two numbers after that; they are
specified to be float, not double, so remember to add the f modifier.)

Here’s the full code, with the iterator and sound effect:

LavaVision/src/lavavision/LavaVision.java
package lavavision;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.effects.Particle;
import net.canarymod.api.world.effects.Particle.Type;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.effects.SoundEffect;
import net.canarymod.api.world.blocks.Block;

import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.BlockIterator;

import net.canarymod.LineTracer;

import com.pragprog.ahmine.ez.EZPlugin;

public class LavaVision extends EZPlugin {

@Command(aliases = { "lavavision" },

description = "Explode your target into a ball of flaming lava",
permissions = { "" },
toolTip = "/lavavision")

public void lavavisionCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;

BlockIterator sightItr = new BlockIterator(new LineTracer(me), true);
while (sightItr.hasNext()) {

Block b = sightItr.next();

spawnParticle(b.getlLocation(), Particle.Type.LAVASPARK);

http://media.pragprog.com/titles/ahmine2/code/LavaVision/src/lavavision/LavaVision.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 6. Add a Chat Command, Locations, and Targets ® 86

if (b.getType() != BlockType.Air) {
b.getWorld().setBlockAt(b.getLocation(), BlockType.Lava);
playSound(b.getLocation(), SoundEffect.Type.EXPLODE);
break;

Install this plugin in the usual way:

$ cd Desktop
$ cd code/LavaVision
$./build.sh

As we loop, we’ll spawn a LAVASPARK effect for each block along the line of sight.
If we hit something that isn’t Air, then we’ll set that block’s type to Lava, play
a sound effect, and break out of the loop. All done.

Stop and restart the server, and in Minecraft look around and pick a target.
Type the /lavavision command and watch the lava bubble.

Now it’s your turn!

Change the effects that this plugin uses. Change the particle effect type from
LAVASPARK to something else interesting. All the available effect types are listed
in the docs.’

3. ualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/effects/Particle. Type.html

https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/effects/Particle.Type.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up * 87

Next, change the sound effect from an EXPLODE to something more subtle, like
perhaps a BURP. The sound effects are listed in the docs too.*

Next Up

In this chapter you've seen how to add a new command to a plugin. Now you
can start adding your own new ideas to existing plugins, and you can work
with locations and blocks in the game. But as soon as you start dealing with
a bunch of locations or a bunch of blocks, you have a problem: how does
Java store lists of things like that, and how do you work with “piles” of data
that you might need to find by name or in order?

In the next chapter we’'ll add a command for remembering information: stuff
you’ll need to keep track of. We'll talk more about variables in Java: who can
see them and who can’t, and—most importantly—how to keep and work with
piles of data.

In short, we're going to look at how to keep track of stuff.
Your Growing Toolbox

36%

You now know how to:

e Use the command-line shell
Build with Java, javac

Run a Minecraft server

Deploy a plugin

Connect to a local server

Use Java variables for numbers and strings
Use Java functions

Use if, for, and while statements
Use Java objects

Use imports for Java packages
Use new to create objects

Add a new command to a plugin
Work with Location objects

Find blocks/entities

4. https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/effects/SoundEffect.Type.html

report erratum - discuss

https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/effects/SoundEffect.Type.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Is your head full yet? | hope not, because you have a few fun things
left to learn. In this chapter we'll add these abilities to your toolbox:

+ Use local variables that exist only within a block

» Use class-level global variables that can be accessed from any-
where in the class

+ Keep piles of data in arrays

CHAPTER 7

Use Piles of Variables: Arrays

Now that we can create a plugin command to do something, we need to take
a look at how to remember stuff—in other words, how to better use Java
variables to keep track of values. We’ll see when to use which kind of variable
and how to work with piles of data in different ways (things like lists of Player
objects), and we’ll build a couple of cool plugins along the way.

Variables and Objects Live in Blocks

Variables live inside of blocks. We've seen and been using blocks all along:
blocks are the bits of code written between braces—{ and }.

Java is a “block structured” programming language. It’s descended from a
family of languages going back to the ancient Algol of the 1960s, a line that
extends from the mother of all programming languages, C, its children C++
and Objective-C, and down to its half-cousin-stepchild Java. After Java was
around, Microsoft came out with C#, which is (totally coincidentally) nearly
identical to Java. All of these languages work more or less the same way.

In these languages, you work with blocks of code. Things like if statements
work with blocks of code. Objects we define (like our plugins) are blocks of code.
The whole structure of the language is based on blocks of code within braces.

And that’s where variables live. For instance, in the HelloWorld plugin, look at
this section where we create and send a message:

public void helloCommand(MessageReceiver caller, String[] parameters) {
String msg = "That'sss a very niccce EVERYTHING you have there...";
Canary.instance().getServer().broadcastMessage(msg);

}

In the body of this function we declare and assign a variable named msg. It’s
a local variable—it lives only while this particular code block is running,

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 90

between its declaration and the closing brace (the } symbol). You cannot use
this msg variable before that, or anywhere else in your program. You might
have another variable named msg somewhere else, but it will be a totally dif-
ferent variable, with different values. This msg is visible and usable only
locally, in this one block of code. We say that its scope is local.

The parameters that you declare in a function are considered local as well.
Here in the declaration for the helloCommand function:

public void helloCommand(MessageReceiver caller, String[] parameters) {

the variables caller and parameters are all available within this function, but
aren’t visible anywhere else. They are local.

Most of the time local variables are all you need. In fact, local variables are
pretty safe to use. No other part of the program can use or change them, and
it’s very clear what line of code set a local variable’s value and where it is
used.

Global Variables

But you can make variables that have a wider scope and aren’t just local (and
we're going to need to do that for our plugins in this chapter).

Maybe you've declared a variable that many different functions can use. Maybe
your entire class, or even the entire program and all your libraries, can see
it and change it. We call that a global variable.

We've used this before, but you haven't seen it yet. Let’s take a sneak peek
inside EZPlugin, which we used in the very first HelloWorld plugin. It has a class-
level static variable declared right at the top, named logger.

EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java

public class EZPlugin extends Plugin implements CommandListener {
/* Boilerplate methods for all of our plugins */
public static Logman logger;

public EZPlugin() {
logger = getlLogman();
}

@Override
public boolean enable() {
logger.info ("Starting up");

We make the call to getlogman and ask it for the logger object. It returns that
to us, and we assign it to our variable named logger. logger is of type Logman,

http://media.pragprog.com/titles/ahmine2/code/EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Variables and Objects Live in Blocks ¢ 91

which is what the documentation tells us it needs to be, but note that we've
added the word static to this declaration.

Static here means two things:

* You access the variable using the name of the plugin without a plugin
object. In this case, HelloWorld.logger will work from anywhere, inside or
outside an object.

e The static variable (logger) is common to all HelloWorld objects, and lives on,
outside the lifetime of any local variables in any object.

That means that any of the functions within a HelloWorld object can come and
go, and their local variables can come and go, but the static variables will
still be there and still remember their values.

Since logger is the very first thing we declare inside our plugin, and it’s not
inside a function itself, all the functions in our plugin—everything inside this
top pair of { and } characters—can use it. It’s not local to any one function.

That means you can use logger anywhere in HelloWorld.java:

public void myFavoriteFunction() {
logger.info("Made it this far");
}

Notice that we don’t need any kind of extra declaration; you can just use logger
anywhere in this plugin that you’d like. That’s a very handy technique to trace
what's happening in a plugin: add a logger statement and you can print out
the values of variables at that point in the code.

Global variables like these, however, can also be mighty dangerous.

Why are they dangerous? Precisely because anyone, anywhere, can change
the value of that variable on you. Maybe you know they did it, but maybe you
don’'t—even if “they” is “you,” weeks from now. If something goes wrong, you
have to go and examine every single piece of code in the system to try to find
out which piece of code set the variable badly, and why. That’s a lot of work
and creates a lot of opportunity to mess things up.

But sometimes you really do need a global variable like that. You may not
want anyone else to change it, but maybe a lot of different pieces of code need
to refer to it. The logger is a good example: it’s a shared service that all plugins
and the server itself use. We all need access to the logging object, and we
need it in a variable that won’'t go away. Unlike with a local variable, we want

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 92

it to be visible for all the functions in our plugin and to stick around as long
as the plugin is around.

Here’s a recap of our story so far:
e A block of code is written inside { and }.

e Variables you declare inside the body of a block of code are local to that
block of code. They go away when the function finishes and returns.

¢ A function’s parameters are local to that function.

e Variables declared as static will outlive any local variables declared within
functions.

Here’s a quick plugin that gives us a /caketower command. The idea is that it
will build a tower of cake blocks. But there’s a subtle problem in the code
involving local and global variables, and the tower may not turn out the way
you expect. Let’s take a look.

Plugin: CakeTower

CakeTower/src/caketower/CakeTower.java
package caketower;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.blocks.BlockType;

import com.pragprog.ahmine.ez.EZPlugin;

public class CakeTower extends EZPlugin {
public static int cakeHeight = 100;

@Command(aliases = { "caketower" },
description = "Build a tall tower of cakes",
permissions = { "" },
toolTip = "/caketower")
public void cakeTowerCommand(MessageReceiver caller, String[] parameters) {
if (caller instanceof Player) {
Player me = (Player)caller;

me.chat("1) cake height is " + cakeHeight); // Print it

http://media.pragprog.com/titles/ahmine2/code/CakeTower/src/caketower/CakeTower.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: CakeTower ® 93

cakeHeight = 50;

int cakeHeight;
cakeHeight = 5;
me.chat("2) cake height is " + cakeHeight); // Print it

makeCakes (me) ;

}
}

public void makeCakes(Player me) {
me.chat("3) cake height is " + cakeHeight); // Print it
Location loc = me.getlLocation();
loc.setY(loc.getY() + 2);
setBlockAt(loc, BlockType.Stone);
for(int i = 0;i < cakeHeight;i++) {
loc.setY(loc.getY() + 1);
setBlockAt(loc, BlockType.Cake);
}
}
}

When run, this code will print out the value of cakeHeight three times. Notice
that there are two declarations of the variable cakeHeight, one at @ and
another at @.

What will this code print out, and how many cakes will end up in the tower?

Try to figure it out first. Then compile and install using build.sh as usual.

What Happened?
Welcome to the wonderfully confusing world of shadowing.

In this piece of code, a variable named cakeHeight is declared at the top of the
plugin. This is the variable you would expect to access anywhere within the
plugin—starting on that line and ending at the matching closing brace, }.

But then on the line at @ we declare another variable with the very same
name. From this point until the next closing brace, }, any time we mention
cakeHeight we’ll be working with this local one, not the class-level one. This
local version shadows the class version. So when we set it to 5 and then print
it, we're modifying this local version.

Calling makeCakes then uses the class version to build the tower. The makeCakes
function has no knowledge of the shadowed variable inside the cakeTowerCommand
function. So you end up with fifty blocks; not a hundred, and not five.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 94

Moral of this story: don’t do this. As you can see, shadowed variable names
can be very confusing. Give your variables unique, memorable names.

Try This Yourself

Since the cake tower doesn’t quite work as expected, let’s fix it!

Change code/CakeTower/src/caketower/CakeTower.java to use just the one local variable
cakeHeight, not the class-level variable, and pass it in to makeCakes.

Now that you know where variables live and can be used, let’s look at a couple
of different ways you can use piles of data, using Java data collections.

Use a Java Array

While variables with individual values are useful and common, sometimes
you need more than that. You need to keep track of all the players in the
system, or one player’s inventory items, or a to-do list, or a grocery list, or a
homework list.

Java has you covered. There are several different ways to keep and access
piles of data. We're going to focus on a few: the simple Array, the classier
ArrayList, and the remarkably handy if somewhat alien HashMap (covered in the
next chapter). First up, the Array.

There are actually a few different Array-like collections in Java, including Array,
Vector, LinkedList, and ArrayList types. They each work differently on the inside,
are stored slightly differently, and perform differently with large or small data
sets, but the idea is the same for all of them.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use a Java Array ® 95

Arrays are probably the simplest of these piles of data. Arrays are mostly used
when you have a small list of values that you want to create directly in code
and then use. Arrays are fixed length—you can’t grow or shrink them. They
aren’t as useful if you need to add, delete, and move things around a lot in
the list (for that, we’ll use an ArrayList, which is up next).

You'll usually employ an Array when you want to access its values by an index,
or run through all the values and do something to them with a for loop.

You can declare an Array using square brackets, and load it up with values
using braces. Here’s an example of a list of Strings:

String[] grades = {IIAII, IIBII’ IICII’ IIDII' IIFII’ IIInCII};
You can access individual elements from the list using brackets:

String yourGrade = grades[2];

In this case, yourGrade will be a C. Hey, wait a minute—why is that a C, and
not a B? That’s because Java, like the C language and its predecessors, starts
counting at O. The first element in any list is 0. The second is 1. The third is
2, and so on. You'll get used to it. Think of accessing the first element as
adding O to the start of the list, and the second element as adding 1 to the
start of the list.

That’s exactly how an Array is stored in memory in the computer: just a bunch
of values all in row. Since the first entry in the Array is right at the start of the
memory, it has no offset. The second value is one over from the start, the
third is two over from the start, and up you go.

You can tell the length of an Array by looking at its length field (note this is not
a function call; there are no parentheses):

int numGrades = grades.length;

numGrades will be set to 6. That means that each of the six values will be
numbered O to 5. The index of the last element is always length-1 (in this case,
6-1, or 5).

Instead of sticking in all the values hard-coded as we did, you could make
an Array that’s a fixed size, then stuff some values into it. Here’s what that
looks like with a list of int values:

int[] quizScores = new int[5];
quizScores[0] 85;
quizScores[1l] = 92;
quizScores[2] 63;

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 96

Although there’s space for 5 values, we're only using the first 3 here, and
that’s okay.

Getting values out looks just like putting values in, only the other way around.
Using the code we just looked at, you retrieve the values like this:

int myBestQuiz = quizScores[1];
int aBadDay = quizScores[2];

To get all the values, you can use an old-fashioned for loop:

for (int i=0; i < 5; i++) {
me.chat("Quiz score #" + i + ": " + quizScores[i]);

}

Remember that Array is a fixed size; if you try to retrieve a value that’s past
the end of the array (like quizScores[15]), your plugin will throw an error and
crash. In this case, since we define the quizScores array to have a size of 5, you
can safely store and retrieve values at index O, 1, 2, 3, and 4. That’s why we
use i <5 in the middle, instead of <=.

It’'s a lot safer to use the Array’s .length field instead of hard-coding a number
like “5.” So it would be better to write that loop like this:
for (int i=0; i < quizScores.length; i++) {

me.chat("Quiz score #" + i + ": " + quizScores[i]);

}

In a little bit we’ll discuss an even better way to loop through all the values
in an array.

Let’s do the same thing now, but with Minecraft blocks.

Here’s an example of code for a quick plugin that builds a tower of different
block types. I'm using our helper function setBlockAt to change air into one of
several different materials.' Let’s walk through this and see what’s happening.

Plugin: ArrayOfBlocks

ArrayOfBlocks/src/arrayofblocks/ArrayOfBlocks.java
package arrayofblocks;

import net.canarymod.plugin.Plugin;
import net.canarymod.logger.Logman;
import net.canarymod.Canary;

import net.canarymod.commandsys.*;

1. The codes for different materials are in the Canary API docs at https://ci.visualillusionsent.net/

http://media.pragprog.com/titles/ahmine2/code/ArrayOfBlocks/src/arrayofblocks/ArrayOfBlocks.java
https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/blocks/BlockType.html
https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/world/blocks/BlockType.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: ArrayOfBlocks ® 97

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.blocks.Block;

import net.canarymod.api.world.blocks.BlockType;

import com.pragprog.ahmine.ez.EZPlugin;

public class ArrayOfBlocks extends EZPlugin {
public void buildTower(Player me) {
Location loc = me.getlLocation();

loc.setX(loc.getX() + 1); // Not right on top of player

BlockType[] towerMaterials = new BlockTypel[5];

BlockType.Stone;
BlockType.Cake;
BlockType.0OakWood;
BlockType.Glass;
BlockType.Anvil;

towerMaterials[0]
towerMaterials[1]
towerMaterials[2]
towerMaterials[3]
towerMaterials[4]

for (int i=0; i < towerMaterials.length; i++) {
loc.setY(loc.getY() + 1); // go up one each time
setBlockAt(loc, towerMaterials[i]);

}
}
@Command (aliases = { "arrayofblocks" },
description = "Create an array of blocks",
permissions = { "" },

toolTip = "/arrayofblocks")
public void arrayofblocksCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
buildTower(me);
}
}
}

Install the ArrayOfBlocks with build.sh, stop and restart the server, and try the
farrayofblocks command. You should see something like Figure 1, Array of Blocks,

Notice that I put the guts of the command in its own function, buildTower,
instead of in the arrayofblocksCommand function itself.

This is just a simple Array of length 5 that we are loading up with values one
at a time. The for loop goes from index O to 4 and changes the block to the
new material in our list.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 98

Figure 1—Array of Blocks

Try This Yourself

Now it’s your turn. Make a small change to reverse the order of the tower’s
elements, so that the anvil is on the bottom and the stone is on the top.

Change the for loop around to do this. Instead of going from O to < 5, change
the loop to go from 4 down to >= 0. Hint: Subtraction might work better than
addition in this case.

Rebuild, stop, start, and try the /arrayofblocks command again.

Now you know how to work with for loops and indexes, but to be honest, this
is an old corner of Java, and it’s a tad musty. Array objects are handy, but
there’s perhaps a better choice.

Use a Java ArrayList

An ArrayList in Java also keeps track of a list of values, just like a simple Array
does. Arraylists are a little messy to declare but simple enough to use, and
much more flexible and a bit safer than plain old Array objects. You can add
and delete from the ArraylList as many times as you want; it’s not a fixed length
and will grow or shrink as needed.

Here’s an example of an ArrayList that will hold Player objects:

List<Player> myPlayerList = new ArrayList<Player>();

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use a Java ArrayList ® 99

There’s a lot more gunk in there than we've seen up to now. First of all, I've
called our new list myPlayerList. Note that funny syntax with the angle brackets,
< and >. You have to specify the kind of list you're making (twice, in fact).
Java 7 improves on this a little; you don’t have to repeat it on the right-hand
side and you can say List<Player> whatever = new ArrayList<>(). Also, in a small bit
of weirdness, notice that although it’s List on the left, it’s ArrayList on the right.
The reason for that is...because Java. (Okay, the reason is that List is the
parent and ArraylList is one particular child.) Moving on now.”

With a list you've created, you can do a lot of fun things, like adding and
removing values from the list, retrieving values, and checking to see if a value
exists. Here’s a bit of sample code:

ListPlay/src/listplay/ListPlay.java
public void listDemo(Player me) {

List<String> 1ist0fStrings = new ArraylList<String>();
1list0fStrings.add("This");
listOfStrings.add("is");
listOfStrings.add("a");
listOfStrings.add("list.");
String third = 1ist0fStrings.get(2);
me.chat("The third element is " + third);
me.chat("List contains " + listO0fStrings.size() + " elements.");
listO0fStrings.add(3, "fancy");
boolean hasIt = 1ist0fStrings.contains("is");
me.chat("Does list contain the word 'is'? " + hasIt);
hasIt = 1ist0fStrings.contains("kerfluffle");
me.chat("Does the list contain the word 'kerfluffle'? " + hasIt);
// Print out each value in the list
for(String value : list0fStrings) {
me.chat(value);
}
listO0fStrings.clear();
me.chat("Now it's cleared out, size is " + list0fStrings.size());
hasIt = 1ist0fStrings.contains("is");
me.chat("List contains the word 'is' now is " + hasIt);
}

2. “Because Java” is a bit of an Internet joke; see http://www.theatlantic.com/technology/archive/

http://media.pragprog.com/titles/ahmine2/code/ListPlay/src/listplay/ListPlay.java
http://www.theatlantic.com/technology/archive/2013/11/english-has-a-new-preposition-because-internet/281601
http://www.theatlantic.com/technology/archive/2013/11/english-has-a-new-preposition-because-internet/281601
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ¢ 100

Try This Yourself

Read that over and see if you can figure out what it will do when run.
Does it all make sense? Let’s go through the code and see what’s going on.

First, at @ there’s the new to create a list that will hold Strings. So far so good.
Next, starting at @ we're adding a couple of strings to this list, one at a time,
using the List function add(). With these added to the list, we can now try to
get some data out.

On the line at @ we're getting the third element of the list—by asking for the
list index of 2. Remember, it’s zero-based counting, just like Array, which we
talked about earlier. The third element is the string "a".

Next we check to see how many elements are in the list, using the function
size() at @, and it tells us there are four.

One of the advantages of an ArrayList over an Array is that you can easily add
and remove values—even in the middle of the list, as seen here on the line at
0. where we're using add() and passing in an index of 3. That will add this
value at index 3 in the list and move all the other values down one.

You can also remove values, read values, and so on, as much as you like. No
matter how we add or shuffle values around in the list, we can check to see
if a particular value is in the list without having to look through the whole
list, as with the call to contains that looks for the word "is" at @. Cool, it’s in
there. After that we’ll try again with a value that isn’t in there. And indeed,
the contains function returns false for "kerfluffle".

You've seen how you could get a single value by index using the get function,
but what if you want to go through the list one by one?

You could use a for loop as we did with Array, but that’s old-fashioned, ugly,
and error prone.

Instead, you can use a for-each construct. The statement for(String value : listOf-
Strings) acts like a for loop that iterates over the collection listOfStrings, and in
the body of the loop it will set the variable value to each entry as it goes
through. We first saw this back in SkyCmd.

Whew! That’s a lot of explanation for a few short lines of code. But it’'s a
powerful idea, and we're going to use this in a plugin in just a bit.

Finally, what happens when we clear out the list entirely (at @)? Not much
interesting, as it’s empty now.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: ArrayAddMoreBlocks ® 101

Plugin: ArrayAddMoreBlocks

Let’s play with this a bit. We'll start with the ArrayOfBlocks plugin but change
it to use an ArrayList instead of an Array. We'll call the new plugin ArrayAddMore-
Blocks.

Since we can add to the array list easily, let’s make it static:
public static List<BlockType> towerMaterials = new ArrayList<BlockType>();

Then, thanks to the wonder of ArrayList, we can add a couple of blocks to the
new tower each time we call /arrayaddmoreblocks:

ArrayAddMoreBlocks/src/arrayaddmoreblocks/ArrayAddMoreBlocks.java
public void buildTower(Player me) {

if (towerLoc == null) {
() towerLoc = new Location(me.getlLocation());
towerLoc.setX(towerLoc.getX() + 2); // Not right on top of player
(2] towerBase = new Location(towerLoc);
}

towerMaterials.add(BlockType.Glass);
towerMaterials.add(BlockType.Stone);
towerMaterials.add(BlockType.0OakWood) ;

for (BlockType material : towerMaterials) {
logger.info("Building block at " + printLoc(towerlLoc));
setBlockAt(towerLoc, material);
towerLoc.setY(towerLoc.getY() + 1); // go up one each time
}
}

To reset the list, you use the clear() function, and I've set up a separate com-
mand to do just that:

ArrayAddMoreBlocks/src/arrayaddmoreblocks/ArrayAddMoreBlocks.java
public void clearTower() {
if (towerLoc == null) {
return;
}
while (towerBase.getY() < towerLoc.getY()) {
setBlockAt (towerBase, BlockType.Air);
logger.info("Clearing block at " + printLoc(towerBase));
towerBase.setY(towerBase.getY() + 1); // go up one each time
}
towerLoc = null; // Reset for next tower
towerBase = null;
towerMaterials.clear();

http://media.pragprog.com/titles/ahmine2/code/ArrayAddMoreBlocks/src/arrayaddmoreblocks/ArrayAddMoreBlocks.java
http://media.pragprog.com/titles/ahmine2/code/ArrayAddMoreBlocks/src/arrayaddmoreblocks/ArrayAddMoreBlocks.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 7. Use Piles of Variables: Arrays ® 102

One last interesting note about variables: notice that at @ and @, I used a
new to make a new variable, as in towerBase = new Location(towerlLoc), instead of
just assigning it, as in towerBase = towerLoc. Why do you think I did that?

Remember that when you create a variable with new, the actual variable is
sitting out in memory someplace, and your name is just a name. So if I had
typed towerBase = towerlLoc, there would only be one Location, with two names.
They wouldn’t be separate variables. By typing towerBase = new Location(towerLoc)
I made a whole new variable named towerBase that has copied the values from
towerlLoc.

If you're planning on changing the values of a variable, and you don’t want
to change the original, always make a copy.

The full plugin is in code/ArrayAddMoreBlocks. Build, stop, start, and try that now,
building and clearing some towers. Remember, you might need to turn around
and face a different direction to see the tower.

Try This Yourself

Now change the code and add a couple of different building materials. Then
try changing it to use just one material, like Dirt perhaps. Or make a nice mix
of Dirt and Grass. You're in control.

Next Up

In this chapter you've learned the difference between local and global variables.
You can use a simple Array or the more flexible ArrayList to store a pile of data,
and traverse it using a for-each iterator.

Arrays are great if you don’t really care about finding one of the objects in
the array by itself. However, if you care about objects by name—Ilike a Player
—then you’ll need something a little fancier.

In the next chapter we’ll cover how to use a HashMap to store data by name (or
by Location, or by anything else you might need).

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ¢ 103
Your Growing Toolbox

44%

[i

You now know how to:

e Use the command-line shell
Build with Java, javac

Run a Minecraft server

Deploy a plugin

Connect to a local server

Use Java variables for numbers and strings
Use Java functions

Use if, for, and while statements
Use Java objects

Use imports for Java packages
Use new to create objects

Add a new command to a plugin
Work with Location objects

Find blocks/entities

Use local variables

Use class-level global variables
Use ArrayLists

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter we'll get a little fancier with piles of data and plugin
structure, and add these abilities to your toolbox:

+ Keep piles of data in hashes
« Use private to hide your private data, and use public for things
other people should see and use

CHAPTER 8

Use Piles of Variables: HashMap

Use a Java HashMap

HashMap is a funny name. The “hash” part refers to how it works internally; it
really has nothing to do with how you use it.

But the “map” part is about what you’d think: it maps a key, which can be
anything, to a value, which can also be anything.

Other languages might call this a dictionary, an associative array or some
kind of associative memory. They all mean the same thing. With an array,
you use an integer as the index. With a HashMap, you can use any object as
the key, especially Strings (see Figure 2, A HashMap, on page 106).

We'll use this a lot in the plugins. It's a great way to keep track of players,
cows that you've spawned, or anything else you want. Although it kind of
works like an array, you don’t use it the same way. Back when we looked at
an array you learned that you can get and set a value with an index like this:

myList[9] = "Andy";
String who = myList[9];

But you can’t use that kind of assignment and bracket notation with a HashMap.
Instead you use its put and get functions. On the plus side, though, now you
can use anything as a key. Most of the time you’ll probably use a String. So
suppose you have a HashMap cleverly named myHash.

myHash.put("Andy", "www.PragProg.com");
// Works like myHash["Andy"] = "www.PragProg.com";

String myUrl = myHash.get("Andy");
// Works like myUrl = myHash["Andy"];

Now myUrl will have the value of "www.PragProg.com".

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 8. Use Piles of Variables: HashMap ® 106

Key Value

"Andy" | —————| "www.PragProg.com"

"Dave" |—————| "www.PragProg.com"

"Steve" |—————| "www.apple.com"

it | — "microsoft.com"

Figure 2—A HashMap

HashMaps are a great way to store a lot of data that’s indexed by a string, just
like a dictionary. You look up a word and get a bunch of data. You can also
use a HashMap to store a bunch of named properties for an object. The nice
part about this is that the property names are just Strings. You could add new
properties or delete them while the plugin is running—something that’s tough
to do with hard-coded function or variable names.

Let’s play with these a bit. Here’s a small standalone program where we can
experiment with a HashMap. Maybe you’ll make a plugin that implements some
kind of Hunger Games-style contest, where you'd want to have a score for
each player. You'd keep track of each player’s score using a HashMap, like this:

HashPlay/src/hashplay/HashPlay.java
© HashMap<String, Integer> currentScores = new HashMap<String, Integer>();

public static void addToScore(HashMap<String, Integer> allScores,
String playerName,
(2] int amount) {
© int score = allScores.get(playerName);
O score += amount;
(5) allScores.put(playerName, score);

}
Here’s how you'd use it:

HashPlay/src/hashplay/HashPlay.java

currentScores.put("Andy", 1001);
currentScores.put("Bob", 20);
currentScores.put("Carol", 50);
currentScores.put("Alice", 896);
addToScore(currentScores, "Bob", 500);

me.chat("Bob's score is " + currentScores.get("Bob"));

http://media.pragprog.com/titles/ahmine2/code/HashPlay/src/hashplay/HashPlay.java
http://media.pragprog.com/titles/ahmine2/code/HashPlay/src/hashplay/HashPlay.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use a Java HashMap ¢ 107

Compiling and running that in a plugin gives us the expected answer of 520
for Bob. Let’s go over the code:

On the line at @ you see the call to new() that creates a new HashMap for us to
use. Since the HashMap has to know what we’re going to use for a key and a
value, we have to pass in the type names using the angle brackets (< and >),
just as we did for an ArrayList—except here we need to pass in two types: one
for the key (which is a String) and one for the value (an Integer).1

With a new HashMap named currentScores in hand, we can go through and create
some test entries in our hash with player names and their scores. This time,
though, we’ll do something a little different.

We're going to make a new helper function that will increment a player’s score.
You can see this starting at @. It’s a simple function that does three things,
but it’s a good habit to get into. Any time you have to do a series of steps a
couple of times, don’t write them out and copy and paste. Instead make a
function to do the work for you, then just call the function when you need it.

Our function addToScore() is declared to take three arguments: the HashMap of
all scores, the string with the player name, and the integer value to add to
the score. With this data, we're doing three steps:

1. Get the current score for the player whose name is in playerName (on the
line at ©).

2. Increase that score by the amount you passed in as amount (at @).

3. Save that newly incremented score back into the hash (at @).

Note that we're not returning any particular value from this function, as it’s
declared to be void, just like main is. Instead it’s modifying the HashMap that’s
passed in; in this case, the global currentScores.

Most of the time, though, you’ll want functions that return a useful value.
For instance, here’s a short, trivial function that adds 10 to any number you
pass in:

public static int addTen(int originalNumber) {
int newNumber = originalNumber + 10;
return newNumber;

1. Why Integer and not int? Because Java. When using collections like HashMap and ArrayList,
you have to refer to primitive types (int, float) by their class names, Integer and Float. The
magic of autoboxing takes care of converting from Integer to int and so on. Just use the
capitalized full names in the angle brackets, and life goes on.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 8. Use Piles of Variables: HashMap ¢ 108

All we've done differently is specify what kind of value we're going to return
(int in this case) instead of using void in the declaration. Then we use the key-
word return with the value that we want to return to our caller. Usually you
want to call return as the very last thing in your function. That’s because it
specifies what value to return and performs the return right then and there.
No more code will be run in your method after it hits the return. You're done.

Try This Yourself

Modify the HashPlayjava source so that no one’s score can go below O or above
1,000. Use a helper function that returns a value to clamp the score to be
between 0 and 1,000.

You can see my solution in HashPlayClamp/src/hashplay/HashPlayjava. In fact, you
might see another subtle trick in there: instead of making the helper function
public, I declared it to be private. What’s that all about?

Keep Things Private or Make Them Public

So far, we've tended to use the Java keyword public when making static vari-
ables and defining functions and plugins. That tells Java that the thing we're
defining should be publicly accessible—all of our own plugin code can use it,
and any other plugin in the system can use it as well (like when we use logger).

There is another option. You can create functions or variables or even helper
objects that no one else can see. Instead of public, you can make them private.

In programming, there’s a simple rule—so simple it's the kind of thing you’'d
tell a five-year-old: don’t expose your privates.

In other words, if you're using a function or something that only you should
use, then mark it as private to make sure that no one from the outside can
use it. Why would you need to do that?

Suppose that somewhere in your plugin you have a function to mark a player
as a super, high-level, tiiber-Wizard. You wouldn’t want any other plugin to
call that function on a player of its choosing. So where normally you’d declare
the function in the plugin like this (leaving out all the other bits):

public class WizardingWorld extends EZPlugin {
public void makeSuperUberHighWizard(Player p) {

}
// Any other plugin can call WizardingWorld.makeSuperUberHighWizard()

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: NamedSigns ¢ 109

You may have noticed that sometimes we create and directly assign a simple value
to a variable, like inta = 25, and sometimes we use the new keyword to create an object,
like a plugin.

These two kinds of objects are stored differently. Immediate values like integers and
floats are kept on Java’s list of function calls that you're making. That list is called
a stack. It’s like a stack of pancakes. Each new function call throws a new pancake
on the stack, and when it's done you remove that pancake and you're back to the
previous one. When a function is finished, its “pancake” is thrown away, and any of
its local variables disappear.

But objects that you create with new are kept off in a big pile of memory we call the
heap. They can stick around after your function is gone, if you want them to (like a
plugin does).

You just need to keep a variable somewhere that points to your object; that variable
can be local and passed around, or global. Java keeps track of how many different
variables reference the object created with new. Once no one is using that object
anymore, it gets tossed in the trash. And then when the system feels like it, it empties
the trash and your object is gone. (Java even calls that “garbage collection.”) And as
we mentioned toward the end of the last chapter, you need to be careful: assignment
gives you two references to the same object; using new creates a new copy of an object.

you can instead make it private, like this:

public class WizardingWorld extends EZPlugin {
private void makeSuperUberHighWizard(Player p) {

}
// Only functions here can call makeSuperUberHighWizard()

}

In general, if you're making a function that you're using internally within this
plugin, and other plugins shouldn't call directly, then make it private. Variables
you are using should almost always be private.

If you want other plugins to see and use it, then make it public.

We'll start using private for our helper functions now.

Plugin: NamedSigns

Let’s put a couple of these ideas together and make a plugin that uses helper
functions (with and without return values), private functions and variables,
some low-level array access, and a hash that will store names and locations.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 8. Use Piles of Variables: HashMap * 110

This plugin lets you create signposts in the game and name them. You can
then put text on any one of the signposts by name. For example, suppose I
make two signs, named one and two, by typing these commands in the chat
window:

/signs new one

/signs new two

/signs set one Hello!
/signs set two Goodbye!

I'd see something like this:

Now I can go in and change either sign’s text at will just by issuing another
signs set command, like this:

/signs set two Adios!

Let’s start with the plugin in all its glory, then look at the interesting pieces.

NamedSigns/src/namedsigns/NamedSigns.java
package namedsigns;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.World;

report erratum « discuss

http://media.pragprog.com/titles/ahmine2/code/NamedSigns/src/namedsigns/NamedSigns.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: NamedSigns ® 111

import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.blocks.Block;
import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.api.world.blocks.Sign;
import com.pragprog.ahmine.ez.EZPlugin;

public class NamedSigns extends EZPlugin {
©® private static Map<String,Location> signs = new HashMap<String,Location>();

® private void usage(Player me) {
me.chat("Usage: signs new name");
me.chat(" signs set name message");

}

private void parseArgs(Player me, String [] args) {
(3] if (args.length < 3) {
usage(me);
return;
}
if (args[1l].equalsIgnoreCase("new")) {
makeNewSign(me, args);
}
if (args[1l].equalsIgnoreCase("set")) {
(4] if (args.length < 4) {
usage(me) ;
return;
}
setSign(me, args);
}
}

// signs new sign name
© private void makeNewSign(Player me, String [] args) {

Location loc = me.getlLocation();
loc.setX(loc.getX() + 1); // Not right on top of player
int y = loc.getWorld().getHighestBlockAt((int)loc.getX(), (int)loc.getZ());
loc.setY(y);
signs.put(args[2], loc);
setBlockAt(loc, BlockType.SignPost);

}

// signs set sign name linel
@ private void setSign(Player me, String [] args) {

String name = args[2];

String msg = args[3];

if (!signs.containsKey(name)) {
// No such named sign
me.chat("No sign named " + name);
return;

}

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 8. Use Piles of Variables: HashMap © 112

Location loc = signs.get(name);

World world = loc.getWorld();

Sign sign = (Sign)world.getTileEntity(world.getBlockAt(loc));
sign.setTextOnLine(msg, 0);

sign.update();

}
@Command(aliases = { "signs" },
description = "Create and name signposts",
permissions = { "" },
toolTip = "/signs new name, or /signs set name message")

public void signsCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
parseArgs(me, args);
}
}
}

There’s a lot of code here, but it’s really just a handful of simple parts and
things we've seen already. These are the major pieces:

* A private static HashMap at @.

A private helper function that returns nothing (void) at @. This function
prints a usage message to the player. We'll call it if we find out the player
didn’t type in the command correctly.

A private helper function at @. This function will create new signs.

A private helper function at @. This function will change the name on
existing signs.

A check of the length of the args array on the lines at @ and @. Since the
user may not have typed in enough words for us to use, we have to check
that the length is long enough and indicate an error otherwise.

A wee bit of magic at @. This is how the Canary docs say to get a Sign
object from a Block.

That’s the gist of it. Now let’s go through each of those pieces in detail.

The signs HashMap

First off, we set up a HashMap named signs to keep track of Locations by name (a
String). When we're creating a new sign, we’ll stuff its location in the hash,
using the name the user gave us. When we go to set text on a sign, we’ll get
the sign’s location back out of the hash by using the name.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: NamedSigns ¢ 113

The parseArgs Function

Since there are a couple of things to check for when the user types in a
command, I've split that out into its own function instead of doing it right in
the signsCommand function.

Notice we're using a parameter from our command function that we haven’t
used before: String[] args. These are any arguments that the player types in with
the command in the chat window. For example, if we type in

/signs

that will be passed to signsCommand in the args array as args[0]; args will have a
length of 1. If we type

/signs set one Hello!

then args[0] will still be "signs", args[1] will be "set", args[2] will be "one", and args[3]
will be "Hello!".

We know that we need at least three values in the args array: it will either be
"signs new name" or "signs set name something".

Remember that with arrays, you have to check that the array is long enough;
otherwise you'll get a lengthy error message from the server that ends up with
something like this:

Caused by: java.lang.ArrayIndexOutOfBoundsException: 1
at namedsigns.NamedSigns.makeSign(NamedSigns.java:26)
at namedsigns.NamedSigns.signsCommand(NamedSigns.java:47)
. 15 more

We're checking the length of the arguments ourselves. But we could also set
the "min == 3" part in the @Command annotation. That way if we don’t have at
least three arguments, the system will send a nice message to the player with
our toolTip as a help message.

Safe in the knowledge that we have at least three values in the args array to
work with, let’s see what the player actually typed in.

The “/signs new” Command
Here’s the part for the "new" command:

NamedSigns/src/namedsigns/NamedSigns.java
// signs new sign _name
private void makeNewSign(Player me, String [] args) {
Location loc = me.getlLocation();
loc.setX(loc.getX() + 1); // Not right on top of player
int y = loc.getWorld().getHighestBlockAt((int)loc.getX(), (int)loc.getZ());

http://media.pragprog.com/titles/ahmine2/code/NamedSigns/src/namedsigns/NamedSigns.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 8. Use Piles of Variables: HashMap * 114

loc.setY(y);

signs.put(args[2], loc);

setBlockAt(loc, BlockType.SignPost);
}

First we grab a handy block next to the player (getX() +1) and get the highest
block at that location with getHighestBlockAt(). That way we won’t be putting the
sign underwater or in bedrock or anything.

Next we save this block’s location to the hash, using the name the player gave
us (args[2]).

Finally we set that block’s type to BlockType.SignPost. Now it’s a sign.

The “/signs set” Command
And here’s the part for the "set" command:

NamedSigns/src/namedsigns/NamedSigns.java
// signs set sign name linel
private void setSign(Player me, String [] args) {
String name = args[2];
String msg = args[3];
if (!signs.containsKey(name)) {
// No such named sign
me.chat("No sign named " + name);
return;

}
Location loc = signs.get(name);
World world = loc.getWorld();
Sign sign = (Sign)world.getTileEntity(world.getBlockAt(loc));
sign.setTextOnLine(msg, 0);
sign.update();
}

Notice that we're setting two local variables, name and msg, to args[2] and args[3].
Why bother? Aren’t they the same thing? Yes, they are, but it’s a lot easier to
read name instead of reading args[2] and trying to remember that 2 is the name
and 3 is the message.

Next we’ll check that we really have an entry in the hash for name, and if not
we’ll complain to the player. Otherwise we can safely get the location for the
sign block.

Next is the bit of magic. We can get the block at the right location, but it's
still a block—a net.canarymod.api.world.blocks.Block. A Block doesn’t know anything
about the functions of a Sign. A Sign is one kind of Block, so we’ll have to convince
Java to make a net.canarymod.api.world.blocks.Sign out of it.

http://media.pragprog.com/titles/ahmine2/code/NamedSigns/src/namedsigns/NamedSigns.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

NextUp ¢ 115

The Canary documentation tells us to call world.getTileEntity() on the block, and
then cast that using the cast operator (Sign) to make a proper sign. With the
sign variable in hand we can call the two Sign functions we need: setTextOnLine()
and update().

setTextOnLine() puts a line of text on the sign at the given index (O in this case),
and update() makes sure that the sign is redrawn in the client so you can see
the new text.

It might look like a fair bit of code, but if you look at each piece one at a time,
it’s not so hard. In fact, now it’s your turn to make some changes.

Try This Yourself

As we have it here, the plugin only sets the first line of the sign, but you can
have up to four lines per sign. Modify the plugin so that if the user types in
extra words, you’ll pass each word to sign.setTextOnLine(). Remember: if it can
hold four lines, then they are numbered O, 1, 2, and 3. We've got the setTextOn-
Line(msg, 0) already, so you'll need to add the others if args is long enough.

Next Up

In this chapter we've seen how to use a HashMap to keep track of important
game data by name or other object, and how to make functions private so that
other plugins can’t access them, or public so that they can.

In the next chapter we’ll do more than just respond to user commands. We'll
see how to listen to the Minecraft server and respond to game events as they
happen, and even create a few of our own.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Your Growing Toolbox

50%

You now know how to:

Use the command-line shell
Build with Java, javac

Run a Minecraft server
Deploy a plugin

Connect to a local server

Use Java variables for numbers and strings

Use Java functions

Use if, for, and while statements
Use Java objects

Use imports for Java packages
Use new to create objects

Add a new command to a plugin
Work with Location objects

Find blocks/entities

Use local variables

Use class-level global variables
Use ArrayLists

Use HashMaps

Use private and public to control visibility

Chapter 8. Use Piles of Variables: HashMap * 116

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

With this chapter you'll add these abilities to your toolbox:

+ Modify blocks in the world

+ Modify and spawn new entities

« Listen for and react to game events
+ Manage plugin permissions

This is exciting! Now you have most of the basic tools you need; you
can alter the world and react to in-game events.

CHAPTER 9

Modify, Spawn, and Listen in Minecraft

Now we're going to go beyond issuing simple commands and dropping squid
bombs, and look at a wider range of things you can do in Minecraft. By the
end of this chapter, you'll be able to affect behavior in the game without
having to issue any commands at all.

All you have to do is listen—you’ll see how, by learning about Minecraft events.
We'll listen for events, act on them, and even schedule our own events to fire
sometime in the future.

From your plugin code, you can change existing blocks and entities, and you
can spawn new ones. We'll look at exactly how to do that:

e Modify existing blocks: change things like location, properties, and
contents

e Modify existing entities: change properties on a Player

e Spawn new entities and blocks

We've done some of this already—we’ve changed a Player’s location, and we've
spawned more than a few Squids. Let’s take a closer look at what else you can
do with the basic elements in the Minecraft world, and then we’ll see how you
can react to in-game events to affect those elements and create new ones.

Modify Blocks

The basic recipe for a block object in Minecraft is listed in the Canary docu-
mentation under net.canarymod.api.world.blocks.Block."

There are many interesting functions in a Block, and we won’t cover them all,
but here are a few of the most useful and interesting things you can do to a
block:

1. https://ci.visualillusionsent.net/job/CanaryLib/javadoc

https://ci.visualillusionsent.net/job/CanaryLib/javadoc
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft * 118

e getlocation() returns the Location for this block. Only one block can exist at
any location in the world, and every location contains a block, even if it’s
just air.

¢ getType() returns the BlockType this block is made of.

e rightClick(Player player) simulates a right-click on the block. Useful for forcing
changes to blocks like levers, buttons, and doors.

Let’s play with some blocks, Minecraft style.

Plugin: Stuck

Let’s look at a plugin that will encase a player in solid rock (the full plugin is
in code/Stuck). When you issue the command stuck with a player’s name, that
player will suddenly be encased in a pile of blocks. (If you're alone on the
server, your player name might be the wonderfully descriptive name “player.”)

We'll start by looking at pieces of this plugin, and then put it all together.

All the interesting parts are in a separate helper function named stuck. The
main part of the plugin should look pretty familiar by now:

Stuck/src/stuck/Stuck.java
package stuck;

import
import
import
import
import
import
import
import
import
import

public

net.
net.
net.
net.
net.

net

canarymod.plugin.Plugin;
canarymod.logger.Logman;
canarymod.Canary;
canarymod.commandsys.*;
canarymod.chat.MessageReceiver;

.canarymod.api.entity.living.humanoid.Player;
net.
net.
net.
com.

canarymod.api.world.position.Location;
canarymod.api.world.blocks.Block;
canarymod.api.world.blocks.BlockType;
pragprog.ahmine.ez.EZPlugin;

class Stuck extends EZPlugin {

@Command(aliases = { "stuck" },

description = "Trap a player in cage of blocks",
permissions = { "" },

min = 2,

toolTip = "/stuck name")

public void stuckCommand(MessageReceiver caller, String[] args) {
Player victim = Canary.getServer().getPlayer(args[1]);
if (victim != null) {

stuck(victim);

}
}

http://media.pragprog.com/titles/ahmine2/code/Stuck/src/stuck/Stuck.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: Stuck ® 119

In the @Command spec, we're setting the minimum number of arguments to 2.
That way we don’t have to write any code to check it ourselves; the system
will do it automatically. Then in stuckCommand itself, we’ll try to get the named
player, which may or may not work. If it doesn’t work (if there’s no player
online with that name), we’ll fall out of the if body and return without doing
anything.

If it does work (that is, if we found the player), then we’ll go ahead and call
stuck, passing in the player object that we got from the server.

Here’s the beginning of the stuck function:

Stuck/src/stuck/Stuck.java
public void stuck(Player player) {
Location loc = player.getlLocation();
int playerX = (int) loc.getX();
int playerY = (int) loc.getY();
int playerZ = (int) loc.getZ();
loc.setX(playerX + 0.5); loc.setY(playerY); loc.setZ(playerZ + 0.5);
player.teleportTo(loc);

The first thing we’ll do inside of the stuck function is get the player’s current
location in loc. Over the next few lines, we’ll set up to teleport the player to
the center of the block he or she is stuck in right now. That makes it easier
to plunk blocks down all around the player.

And how are we going to do that, exactly? Well, we know that a player takes
up two blocks. The location we got for the player is really where the character’s
legs and feet are. The block on top of that (y+1) is the player’s head and chest.
So we want a bunch of blocks, arranged like a stack of two blocks on all four
sides of the player, plus a block underneath and one on top. That should be
ten blocks in all, as you can see in Figure 3, Trapping a player in blocks, on

We know where each of those blocks goes, based on the player’s location. So
we've got a case where we need ten sets of coordinates, each one offset from
the player’s base block. We need a list of lists.

And that’s what you’ll see next. It’s an int array of ten elements, and each
element is an int array of three offsets, one each for x, y, and z values:

Stuck/src/stuck/Stuck.java
int[][] offsets = {

//x, Yy, z
{6, -1, 0},
{6, 2, 0},
{1, o, 0},

{1, 1, @},

http://media.pragprog.com/titles/ahmine2/code/Stuck/src/stuck/Stuck.java
http://media.pragprog.com/titles/ahmine2/code/Stuck/src/stuck/Stuck.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 120

Figure 3—Trapping a player in blocks

{-1, 0, 0},
{-1, 1, o},
{0, 0, 13},
{0, 1, 1},
{0, o0, -1},
{0, 1, -1},

1

We'll use a simple for loop to go through this list of offsets. The first element
in the list is indexed at 0, and we’ll go up to (but not including) the length of
the list. By using the length of the offsets list instead of sticking in a fixed
number like 10, we can more easily add extra blocks to the list if we ever
want to (remember, we're adding the playerX, playerY, and playerZ offsets from
the preceding code):

Stuck/src/stuck/Stuck.java
for(int i = 0; i < offsets.length; i++) {
int x = offsets[i][0];
int y = offsets[i][1];
int z = offsets[i][2];
setBlockAt(new Location(x+playerX, y+playerY, z+playerZ),
BlockType.Stone);

http://media.pragprog.com/titles/ahmine2/code/Stuck/src/stuck/Stuck.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: Stuck ¢ 121

So here we are, going through the list of offsets. At each list index (which is
in i), we need to pick out the three elements x, y, and z. In each of the small
arrays, x is first at index 0. The Java syntax lets you work with arrays of
arrays by writing both indexes, with the big list first. Think of this set of
numbers as a table or a matrix, with rows and columns, like you might find
in a Microsoft Excel spreadsheet. You specify indexes in “row-major order,”
which just means the row comes first, then the column. For each trip through
the loop, we’ll pick out x, y, and z values from the list. That’s the location of
a block we want to turn to stone.

We get the block at that location we want—in this case, by adding the x, y,
and z offset to the player’s location (playerX, playerY, and playerZ from the code).
With the block in hand, simply set its material to stone by using the constant
BlockType.Stone. All the different block types are listed in the documentation for
net.canarymod.api.world.blocks.BlockType. You could, for instance, remove a block
without breaking it—you’d set the block’s material to BlockType.Air, like we did
back with the array towers.

Here’s the code for the full plugin, all together:

Stuck/src/stuck/Stuck.java
package stuck;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.blocks.Block;

import net.canarymod.api.world.blocks.BlockType;

import com.pragprog.ahmine.ez.EZPlugin;

public class Stuck extends EZPlugin {

@Command(aliases = { "stuck" },
description = "Trap a player in cage of blocks",
permissions = { "" },
min = 2,
toolTip = "/stuck name")
public void stuckCommand(MessageReceiver caller, String[] args) {
Player victim = Canary.getServer().getPlayer(args[1]);
if (victim !'= null) {
stuck(victim);
}
}

http://media.pragprog.com/titles/ahmine2/code/Stuck/src/stuck/Stuck.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 122

public void stuck(Player player) {
Location loc = player.getLocation();
int playerX = (int) loc.getX();
int playerY = (int) loc.getY();
int playerZ = (int) loc.getZ();
loc.setX(playerX + 0.5); loc.setY(playerY); loc.setZ(playerZ + 0.5);
player.teleportTo(loc);

int[][] offsets = {

//x, Yy, z
{06, -1, 0},
{6, 2, 0},
{1, o, o0},
{1, 1, o0},
{-1, 0, 0},
{-1, 1, 03},
{6, 0o, 1},
{6, 1, 1},
{6, 0, -1},
{06, 1, -1},

b

for(int i = 0; i < offsets.length; i++) {
int x = offsets[i][0];
int y = offsets[i][1];
int z = offsets[i][2];
setBlockAt(new Location(x+playerX, y+playerY, z+playerZ),
BlockType.Stone);

}
}
}

Compile and deploy the Stuck plugin and give it a try. What happens if the
player is standing on the ground or up in the air? What does it look like from
the player’s point of view, inside the blocks?

Try This Yourself

In the Stuck plugin, we've encased a player in the minimum number of blocks
needed to enclose the player. But from the outside, it makes kind of a weird-
looking shape.

So here’s what you need to do: add extra blocks so that the player is encased
in a solid rectangle, measuring three blocks wide, three blocks deep, and four
blocks tall. Add the extra blocks to the list of block offsets, then recompile
and deploy and see if you've put the extra blocks in the right places. From
the outside, it should look like a solid, rectangular block.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Modify Entities ® 123

Modify Entities

Entities, as you might expect, are quite different from blocks. For one thing,
there are many more kinds of entities, and they have different kinds of abilities
(and functions for us). With blocks, all you have to do is change the block
type and perhaps add some additional information (like on a sign), but entities
are more complicated.

To start off, all entities have the capabilities described in net.canarymod.api.enti-
ty.Entity. Each Entity object includes the following useful functions:

getLocation() Return the Location of the entity
setFireTicks(int ticks) Set time to keep an entity on fire
setRider(Entity rider) Set the entity’s rider

spawn() Spawn this kind of Entity into the world
teleport(Location location) Teleport the entity to a new location

Then, depending further on the type of the entity, you might have other cool
functions to play with. Living entities (net.canarymod.api.entity.living.EntityLiving), for
example, have the following extra functions that other nonliving entities don’t
have:

getiteminHand() Return the item this entity is holding.

setAttackTarget(LivingBase living- Set this entity’s attack target.

base)

getHealth() Return a double of this entity’s health. It can
be zero (dead) up to the amount returned by
getMaxHealth().

setHealth(double health) Set the health. Zero is dead, without causing
damage.

kill() Kill this entity, causing damage (and loot
drops, etc.).

You may have noticed that not all these functions are declared in EntityLiving
itself. This is where Java gets a little messy. The familiar entity objects
incorporate a lot of different parent recipes. For instance, a Cow is an Ageable,
an EntityAnimal, an EntityLiving object, and, of course, an Entity.

That means it uses functions from all these different parents. For example,
because Cow inherits from Ageable, you get functions where you can alter a Cow
property to change its growing age.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft * 124

A Player, on the other hand, does not use Ageable, so you can’t turn players into
babies, even if they're acting like them. Instead, a Player has a whole different
set of functions available, including functions to set and get the player’s
experience level, food level, inventory, and so on.

Spawn Entities

You can use several functions to spawn different entities and creatures, as
well as game objects—like an Ender Pearl.” To create new things in the world,
we'll use functions defined in our EZPlugin helper instead of writing out all the
code directly. It's not that the code is particularly complicated or hard to
understand; it’s just that these couple of lines of code will always be the same,
so it makes sense to use a helper function. That way you only need to use
the one-line helper function call, instead of using several lines of duplicated
code. Let’s take a close look at what those helper functions actually do.

Here’s the method we’ve been using to spawn cows, squid, and such:

EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
public static EntitylLiving spawnEntityLiving(Location loc, EntityType type) {
EntityFactory factory = Canary.factory().getEntityFactory();
EntitylLiving thing = factory.newEntitylLiving(type, loc);
thing.spawn();
return thing;

}

It's a little messy, maybe, but it's a common Java pattern. The idea is that
first you obtain a factory object, in this case, an EntityFactory. The factory works
as the name implies; it generates things for you. Here, it's generating new
EntityLiving objects. But just creating a new object (even a Cow object) isn’t
enough to make it exist in the Minecraft world. You need to tell the object to
spawn itself.

Spawning particles is a little easier:

EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
public static void spawnParticle(Location loc, Particle.Type type) {
loc.getWorld().spawnParticle(new Particle(loc.getX(),
loc.getY(), loc.getZ(), type));
}

Here we just need to use the spawnParticle function in World, and pass it a new
Particle initialized with individual coordinates x, y, and z. Again, it’s not com-
plicated, but a helper function literally “helps” us keep code cleaner and
easier to read.

2. In survival mode, right-clicking on an Ender Pearl will transport you to where it lands.

http://media.pragprog.com/titles/ahmine2/code/EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
http://media.pragprog.com/titles/ahmine2/code/EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: FlyingCreeper ® 125

The function we've been using to set block types is also straightforward:

EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java

public static void setBlockAt(Location loc, BlockType type) {
loc.getWorld().setBlockAt(loc, type);

}

Although a Block has its own setType, that doesn’t make the change in the world
like we want. So instead, we use the World’s setBlockAt() function. By always
using the helper function, we’re sure to always use the correct version.

Plugin: FlyingCreeper

Here’s a plugin that shows spawning two entities: a bat and a creeper. We'll
make the creeper ride the bat, and then turn the bat invisible using a potion
effect. The result is a nightmarish, terrifying, flying creeper.

Here are the guts of the plugin. Notice I'm not using the helper functions to
spawn this time; instead I'm using the factory calls directly, as I'm using a
slightly different version of spawn.

FlyingCreeper/src/flyingcreeper/FlyingCreeper.java

Location loc = me.getlLocation();
loc.setY(loc.getY() + 5);

EntityFactory factory = Canary.factory().getEntityFactory();
EntitylLiving bat = factory.newEntitylLiving(EntityType.BAT, loc);
EntitylLiving creep = factory.newEntitylLiving(EntityType.CREEPER, loc);
bat.spawn(creep);

PotionFactory potfact = Canary.factory().getPotionFactory();
PotionEffect potion =
potfact.newPotionEffect(PotionEffectType.INVISIBILITY,
Integer.MAX VALUE, 1);
bat.addPotionEffect(potion);

All Entity objects can have riders. In theory, you could even ride primed TNT.
But I wouldn'’t advise it. Here we're going to have the creeper ride the bat by
spawning the bat with a creeper rider (the argument to spawn).

Next we need to turn the bat invisible to make the flying creeper look more
convincing. Fortunately, all LivingEntity objects can use potion effects.® We'll
create a new potion effect, which lets us specify the effect’s type, duration,
and magnitude:

PotionEffect (PotionEffectType type, int duration, int amplifier)

http://media.pragprog.com/titles/ahmine2/code/EZPlugin/src/com/pragprog/ahmine/ez/EZPlugin.java
http://media.pragprog.com/titles/ahmine2/code/FlyingCreeper/src/flyingcreeper/FlyingCreeper.java
https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/potion/PotionType.html
https://ci.visualillusionsent.net/job/CanaryLib/javadoc/net/canarymod/api/potion/PotionType.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 126

In this case, the type is PotionEffectType.INVISIBILITY and we want it to last forever,
so we’'ll make the duration the largest possible value we can: Integer.MAX_VALUE.
There is no integer larger. The magnitude doesn’t really matter in this case,
as you can’t be any “more invisible,” so we’ll just use a 1.

Finally, we add that new potion to the bat, and it’s invisible.

Congratulations! You are now the proud owner of flying creepers. Good luck,
and stay low.

For extra credit, you could go back and modify the SquidBomb to generate a ton
of invisible creepers instead of squid. That’d be fun.

We'll see some more examples of modifying and spawning entities in the next
section, once we see how to listen for game events.

Listen for Events

Now we get to the best part. You know how to write code for commands the
user types in and you know how to do things to affect the world. Now it’s time
to see how to monitor what's going on in the world so you can respond to
gameplay automatically, without typing in a command or anything.

It works like this: you set up your code such that your functions get called
when some interesting event happens. In your function, you can let the events
happen or you can stop them.

Here’s a skeleton of what we need to add to our basic plugin in order to
incorporate a listener. There are four parts to it:

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Listen for Events ® 127

Import the plugin listener and the event hook(s) classes.

Declare that your plugin implements PluginListener.

Register to listen for events with registerListener.

Add the magical tag @HookHandler, marking your function as an event
handler. Give the event you want as an argument.

W

You'll see all four parts in this short example skeleton of a listener:

import net.canarymod.hook.HookHandler;
import net.canarymod.plugin.PluginListener;
// import the particular hook class here

// Add "implements PluginListener" here:
public class HelloWorld extends EZPlugin implements PluginListener {

@Override

public boolean enable() {
Canary.hooks().registerListener(this, this);
return super.enable(); // Call parent class's version too.

}

// Here's one event listener:
@HookHandler
public void anyname(SomeHook hookevent) {
// Some code goes here
}
}

First off, you have to import the class for the event you're interested in (you'd
add this somewhere around @).

There are a ton of events available, all listed in the Canary documentation
under net.canarymod.hook and its children. Suppose you're interested in doing
something whenever someone in the game teleports. You'd want the TeleportHook
class in the package net.canarymod.hook.player, so first thing here you’d import
net.canarymod.hook.player.TeleportHook.

Then the declaration for the plugin needs to add the magic words implements
PluginListener, as shown at @.

Next you need to add your own enable() function, which then calls the parent
class’s enable as shown starting at ©. This is a standard piece of boilerplate
code that just says “make this plugin listen for events.” You need this only
once in this file; it will work for all events you'll use. Add it in, and off we go.

Finally we come to the event listener itself, starting at @. That @HookHandler
thing is an annotation that tells Java that the next function is special, just

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 128

like we've seen with @Command. Always start off an event handler with that
special annotation.

The function for the listener itself can be named anything you want (shown
here as anyname). But the argument list is important: the type of event you list
here determines when this function will be called, or if it gets called at all.

An event handler for the TeleportHook would look like this:

@HookHandler
public void myTeleportListener(TeleportHook event) {
// Some code here

}

I made up the name myTeleportListener, but that part doesn’t matter—it’s the
TeleportHook that’s important. According to the documentation, this event hook
object has several interesting functions we can use:

getCurrentLocation() Return the location the player is teleporting from
getDestination() Get the location this player is teleporting to
getPlayer() Get the player

setCanceled() Lets you cancel this event

For instance, to prevent anything from teleporting anywhere, you could write
this:
@HookHandler
public void myTeleportListener(TeleportHook event) {
event.setCanceled();

}
Plugin: BackCmd

Let’s use some of these features in a complete plugin. Here’s the full source
for BackCmd that provides a single command named back. Go ahead and build
and install it:

$ cd Desktop
$ cd code/BackCmd
$./build.sh

And restart the server.

Now teleport to a couple of locations, either by using the /tp command in cre-
ative mode or by right-clicking on an Ender Pearl in survival mode.

Now type /back, and you’ll be teleported back to your last location.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd ¢ 129

This plugin will listen for events to keep track of where you've been, and let
you return to previous locations in order.

BackCmd/src/backemd/BackCmd.java
package backcmd;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
net.
net.

net

net.

net

net.

net

net.
net.
net.
com.

util.ArraylList;
util.HashMap;
util.List;
util.Stack;
canarymod.
canarymod.
.canarymod.
canarymod.
.canarymod.
canarymod.
.canarymod.
canarymod.
canarymod.
canarymod.

plugin.Plugin;

logger.Logman;

Canary;

commandsys.*;
chat.MessageReceiver;
api.entity.living.humanoid.Player;
api.world.position.Location;
hook.HookHandler;
hook.player.TeleportHook;
plugin.PluginListener;

pragprog.ahmine.ez.EZPlugin;

© public class BackCmd extends EZPlugin implements PluginListener {

® private static List<Player> isTeleporting = new ArrayList<Player>();
private static HashMap<String, Stack<Location>> playerTeleports =

new HashMap<String, Stack<Location>>();

@Override

public boolean enable() {
(3] Canary.hooks().registerListener(this, this);
return super.enable(); // Call parent class's version too.

}

(4] public boolean equalsIsh(Location locl, Location loc2) {
return ((int) locl.getX()) == ((int) loc2.getX()) &&
((int) locl.getZ()) == ((int) loc2.getZ());

}

@HookHandler
© public void onTeleport(TeleportHook event) {
Player player =
if (isTeleporting.contains(player)) {
isTeleporting.remove(player);
} else {
Stack<Location> locs = playerTeleports.get(player.getName());
if (locs == null) {
locs = new Stack<Location>();

}

event.getPlayer();

locs.push(player.getLocation());

http://media.pragprog.com/titles/ahmine2/code/BackCmd/src/backcmd/BackCmd.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 130

locs.push(event.getDestination());
playerTeleports.put(player.getName(), locs);

}
}
@Command(aliases = { "back" },
description = "Go back to previous places that you teleported to.",
permissions = { "" },

toolTip = "/back")
public void backCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;

Stack<Location> locs = playerTeleports.get(me.getName());

if (locs != null && !locs.empty()) {
Location loc = locs.peek();
while (equalsIsh(loc, me.getlLocation()) && locs.size() > 1) {
locs.pop();
loc = locs.peek();

}
isTeleporting.add(me);
me.teleportTo(loc);
} else {
me.chat("You have not teleported yet.");

}
}
}
}
As this plugin is using event listening, here are the special things you need
to do:

e At @, declare that this plugin implements Listener.
o At ©, register the plugin for events.

o At @ add the @HookHandler annotation and declare that this event listener
will listen for TeleportHook events.

Every time a player teleports, the onTeleport function will be called. The first
thing we do is get the correct Player object, which is stored in the event that
was passed in to us. Now we know who we're dealing with.

Next we're looking in the list named isTeleporting to find out whether this player
is someone we are in the middle of teleporting. What'’s isTeleporting, you ask?

Ah, take a look up at the top of the plugin around @, and you’ll see two
variables declared to be private static. That means no one else can see them,
and the values will stick around in between this command being run. So here

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd ¢ 131

we have isTeleporting and playerTeleports to keep track of players and the locations
they’ve teleported to and from.

We're checking to see if our isTeleporting list contains this player already. If it
doesn’t, we’ll add it—this player has just started teleporting. If the isTeleporting
list already contains this player, then we should ignore this event (and remove
the player from the list). That means we generated this event ourselves, and
we don’t want our own teleport to trigger the teleport, because it would keep
doing that forever. So we throw this extra teleport event out.

If this player has teleported before, we’ll get a locs from the playerTeleports hash
(a hash of locations) using the player as a key. We'll add this location to the
existing list. If this is the player’s first time teleporting, we’ll make a new list
(of Locations) and add this location as its first entry.

But this is no ordinary list. It’s a kind of list, all right, but it’s a Stack, not a
plain list. A Stack works like a stack of pancakes. You add to the top of the
stack, and when you remove a pancake it comes off the top of the stack. That’s
the model we want for our list of places we’ve teleported. As you teleport, each
location is added to the top of the stack—and it’s the top one you want to go
back to next, then the one under that, and so on.

To add an object to the top of a stack, you push it on. To get the value and
remove the object at the top, you pop it off. To just check on the top value
without removing it, you can peek at it.

As players teleport around, we’ll keep a stack of each of their teleport locations,
stored in a Stack in our playerTeleports variable. We can get to the stack using
the Player object as a key. You can see what this looks like on page 132.

Finally, we get down to backCommand. When we get a back command, we’ll get
the player’s list of teleport locations (if there is one), and peek at the location
on the top of the stack, saving that in loc for now.

Maybe we teleported to this spot and haven’t moved yet. In that case, we’'d
want to go to the previous spot—not stay at this location. So we’ll test for
that: if we're still at the same location as the last teleport (or close to it), we’ll
remove that location from the locs list by using the pop, and set loc to the next
location in the stack.

Either way, we've got a loc pointing to the spot that we want to teleport to.
We'll add the player to the isTeleporting list and teleport the player to the new
location.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ® 132

latest loc

! loc

I

I

I

! loc loc loc

I

1

1

! loc loc loc

|

\/

. loc loc loc loc
earliest

Player Player Player Player

player_teleports

Figure 4—playerTeleports is a hash with Player keys and Stack values.

Now what do we mean by “or close to it”? Notice that we're using a helper
function named equalsish (declared at @). It’s checking two locations to see if
the x- and z-coordinates are within the same block. By casting the floating-
point values to integer (using the (int) keyword), we're throwing out the
fractional part of the coordinate. We're interested only if you're in the same
block, not at a slightly different position within the same block.

Try This Yourself

For this exercise, you're going to create a brand-new plugin that uses a listener.

Create a plugin named FireBow. If you fire an arrow, we want to make it explode
in a huge, crater-making explosion when it hits something. To do this, listen
for a ProjectileHitHook and call world.makeExplosion. Use a large value for the power,
like 100.0f to make a really large crater. Don’t forget to cancel the arrow event;
that way, there will be no arrow—only a boom.

Hint: You can get the arrow from the ProjectileHitHook event using event.
getProjectile().

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Check Permissions ® 133

My example of code that does all this is in code/fireBow. Try it yourself first,
from scratch, and if you get stuck take a look at the example. I added two
commands that allow you to enable or disable the firebow behavior.

Check Permissions

Sometimes when writing a plugin, you might want to restrict the commands
you've created—maybe only ops should run them, or maybe you have different
kinds of players or teams, and each should only be able to run certain
commands.

For instance, suppose you want to restrict the firebow commands to a select
set of players. We'll invent a new name; let’s call it commands.firebow.enable.

You can then use the permissions field in the @Command annotation to check if
the player issuing the command is one of the chosen few:

@Command(aliases = { "nofirebow" },

description = "Disable firebow behavior",
permissions = { "commands.firebow.enable" },
toolTip = "/nofirebow")

Now only players who have the permission for commands.firebow.enable can shoot
the massively exploding firebows. Great. So how do you grant players these
permissions?

Setting and Managing Permissions

Setting and managing permissions can be a big deal if you're running a large
server with lots of users. You might set up groups or classes of users in the
server, using the Canary permissions commands.

Canary provides a bunch of in-game commands, including commands to set
permissions for players and groups, and to check what permissions someone
has. You can run these commands in the server console, or from inside the
client. Here are some examples:

e /playermod permission add playerName permissionName—grant the permission-
Name to playerName.

* /playermod permission check playerName permissionName—check if playerName
has the permission permissionName.

* /playermod group set playerName groupName—add playerName to the group
groupName.

e /groupmod permission list groupName—Ilist permissions for groupName.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 9. Modify, Spawn, and Listen in Minecraft ¢ 134

e /groupmod permission add groupName permissionName—add the permission
permissionName to members of groupName.

e /groupmod permission check groupName permissionName—check if members
of groupName have the permission permissionName.

For example, in our plugin, to give jack37 permissions to use our /firebow com-
mand, you'd type the following commands in the console:

playermod permission add jack37 commands.firebow.enable

Check out the Canary docs for more details.

Next Up

We got a lot of new abilities in this chapter: you can now modify Minecraft
blocks and spawn entities, manage plugin permissions, and, most importantly,
listen for interesting events to happen in the game and react to them. That’s
the real heart of plugins that can change how the Minecraft world works by
automatically acting on events as they occur.

In the next chapter we’ll look at how to schedule events in the future, and
make an exploding cow shooter. See you there.

Your Growing Toolbox

60%

You now know how to:

e Use the command-line shell e Add a new command to a plugin
¢ Build with Java, javac e Work with Location objects
¢ Run a Minecraft server ¢ Find blocks/entities
¢ Deploy a plugin ¢ Use local variables
¢ Connect to a local server ¢ Use class-level global variables
e Use Java variables for numbers and e Use AraylLists
strings ¢ Use HashMaps
e Use Java functions ¢ Use private and public to control visibility
e Use if, for, and while statements ¢ Modify Minecraft blocks
e Use Java objects ¢ Modify and spawn entities
e Use imports for Java packages ¢ Listen for and react to game events
¢ Use new to create objects e Manage plugin permissions

report erratum

- discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter you'll learn more about objects, classes, and scheduling
tasks that will run later. You'll add this knowledge to your toolbox:

+ How to create a separate class
» How to schedule a task object to run later
+ How to schedule a task object to keep running later

Your toolbox is nearly complete now. You can write some really cool
plugins just based on what we've done so far.

cHAPTER 10

Schedule Tasks for Later

Now we’ll talk about how to make things happen in Minecraft that aren’t in
direct response to either an event or a user-issued command: how to schedule
tasks that will happen sometime in the future—and even keep running—all
on their own. This feature helps you implement things that seem to act
independently, like attacking creepers or other enemies.

On the Java front, you'll also see how to make your own classes in separate
files, and we’ll take a look at some of the problems Java has with running
multiple things at once.

What Happens When?

When we talk about running something “later,” it exposes the ugly truth that
the world doesn’t stop changing just because your code is running. Computers
can do more than one thing at once, and are doing that all the time. But most
code isn’t written that way.

Think about some of the plugins we've looked at so far. What would happen
if, right in the middle of running that piece of code, another player typed the
same command and that same code started running from the top?

Take a look at the figure on page 136. Each arrow and code snippet represents
a set of instructions that the computer is running at the same time. We call
each separate set a thread—kind of like the thread of a subplot in a novel, or

the thread of one conversation in the middle of many others at lunch.

Normally you think of the computer running through your code once, as in
the left part of the diagram. You’d think the computer executes instructions
one after another, from top to bottom, and nothing else is going on at the
same time. That would be one thread of execution (like one conversation).

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 10. Schedule Tasks for Later ® 136

if (caller instanceof Player) {
Player me = (Player) caller;
Location loc = me.getLocation();
double y = loc.getY();
loc.setY(y+50);
me.teleport(loc);

}

if (caller instanceof Player) {
Player me = (Player) caller;
Location loc = me.getLocation();
double y = loc.getY();
loc.setY (y+50);
me.teleport(loc);

}

if (caller instanceof Player) {
Player me = (Player) caller;
Location loc = me.getLocation();
double y = loc.getY();
loc.setY(y+50);
me.teleport(loc);

}

Figure 5—Various threads executing code

But in fact that’s not the case; the computer can be running a bunch of dif-
ferent threads of execution, apparently all at the same time. Can our code
work that way? What would happen to our code if it were run by multiple
threads?

If you're using only local variables and aren’t trying to change anything in
common in the Minecraft world, that would probably be fine—each version
of the code as it’s running would have its own copy of variables, and no harm
done. But what if you're using a static variable, something like a big HashMap
to keep track of players and values? Then you have two bits of code reading
and writing from it at the same time, and that generally leads to disaster.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Put Code in a Class by Itself ® 137

Imagine that you read the player’s health as 50 in one thread, but then a
second thread sets it to O—Xkilling the player. You don’t know that, and you
subtract 10 from the player’s health and reset it to 40. Now the other thread
thinks it’s killed the player, but instead of O the health has “magically” been
set to 40! That's a simple and innocent example, but far worse things can
happen that could cause strange bugs or make your code—and the server
—crash.

There are ways to write code that can be run by multiple threads safely;
however, many libraries, and most of the Canary API, are not designed that
way.

That’s important enough to repeat: the Canary API, and our plugin code that
uses it, are not built to be run by multiple threads. The code will break.

So when we want to run a piece of code “later,” we can’t actually let it run at
some random time. In particular, we can’t let a piece of our code run at the
same time as another piece of our code, or at the same time as the server
code.

Instead, we have to let the server determine when to run the code. Then it
can run it pretty much as if it were a player typing in a command or
responding to an in-game event; it's the only thing running at the time. We
calls that a synchronous task, and that’s what you’ll learn how to set up in
this chapter.

But to set up a task, we’ll first see how to make our own classes.

Put Code in a Class by Itself

First, let’s be a little more precise in what we name things. In Java source
code, you declare a plugin to be a public class, which is Java’s way of saying,
“This is a recipe. I can make objects of this class at runtime.” While I've been
loosely talking about recipes and parent recipes, I'm going to start calling
them by their proper Java name: classes. “Recipes” are classes.

So far we've sort of cheated—we’ve been putting all new code in our one plugin
class, in one source-code file. When the Minecraft server runs, it makes one
object from that class file and uses that.

But if you look at other plugins out on the Internet, you’ll notice that often a
plugin (and larger programs) are made up of several different classes, all
working together. The main class file has the plugin itself, while other class
files might contain related objects, or tasks to be scheduled, or any other
kind of helper code that the plugin might need. We've been adding code right

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 10. Schedule Tasks for Later ® 138

in our main class, but we aren’t going to do that with schedule-able tasks;
we’ll define that code in its own class.

Mechanically, making another source-code file is easy. If you can hit your
text editor’s File -> Save (or something similar), you can make a new file. As
long as you've saved it in the correct directory, the build system will see the
new file and know what to do. But that’s not enough. You need to know how
to tell the plugin about the new file, and the new file about the plugin.

What Should | Put in a Class?

Beginning programmers might look at a class as just a box to toss functions
and data into. Overall, that’s a bad idea—just like a messy attic or garage,
you end up with a lot of boxes full of junk spilling out and tangled up in each
other.

Instead, any class you create should be responsible for just one thing. In
other words, any class should have only one reason to change. If it’s respon-
sible for a lot of different things, then suddenly it’s got a lot of reasons it may
need to change: it’s fragile, and fragile code leads to suffering.

In this case, the Canary API guides us in the right direction. We will be
making our plugin class, but in order to make a scheduled task, we need to
make a second class for it as well, so we’ll end up with two classes: the plugin
and the task. We’ll need to get them to work with each other as well.

So let’s see what it takes to make a task that we can schedule to run (when
the server thinks it’s okay to run it) sometime in the future. We'll look at the
bits and pieces first, and then put it all together in a cool plugin.

Make a Runnable Task

Here’s the simplest code for a task that just sends a broadcast message. It
may not do much, but you can use this piece of code as a starting template
when making your own tasks.

Just add the code you want down in the body of the run function, change the
package name, and add any imports you may need. (Remember, the common
ones are listed in Appendix 7, Common Imports, on page 253, and you can find

others in the Canary or Java docs.)

© package examplepackage;
import net.canarymod.Canary;
import net.canarymod.tasks.ServerTask;
import com.pragprog.ahmine.ez.EZPlugin;

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Schedule to Run Later ® 139

public class ExampleTask extends ServerTask {

private final EZPlugin plugin;

public ExampleTask(EZPlugin plugin) {
super(Canary.getServer(), 0, true); // delay, isContinuous
this.plugin = plugin;
// you can keep a reference to your plugin as I've done here,
// or to any other variable you pass in

}

public void run() {
// Do something interesting...
Canary.instance().getServer().broadcastMessage("Surprise!");

}

}

In this case, you'd put this code in its own file, which must be named Example-
Task.java (to match the name on the line at @), and be in a directory named
after the package (to match the name at @).

So far so good, but what’s up with this interesting-looking function that has
no return type and is named ExampleTask—the exact same name as our class?
Remember, that’s called a constructor. That’s the function Java calls when
it's creating a new ExampleTask.

So to create our ExampleTask, you have to pass in a EZPlugin to the new (which
gets passed to your constructor). In other words, you have to give it your main
plugin object. That way this task can get at all the server things it might need
to, like the world, players, and so on. That’s not mandatory, but it can be
useful.

Now that you have a task that will do something interesting (well, sort of),
how do you schedule it?

Schedule to Run Later

Now back to your main plugin: once you have the task defined over in its own
class, you can create an object of that class from your main plugin using new,
and schedule it to be run in the future using addSynchronousTask().

ExampleTask task = new ExampleTask(plugin);
Canary.getServer().addSynchronousTask(task);

plugin should be a variable that’s set to your main plugin. If you're putting this
code in a non-static function in your plugin, you can use the Java keyword
this, which means “this plugin object.” If you're putting this code in a static
function, you need a static variable (like plugin) that has previously been set

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 10. Schedule Tasks for Later ® 140

to the plugin. For example, in an object function (a method) like your construc-
tor or enable, you’d set plugin = this.

You might want to hang on to the task variable, but it’s not necessary. With
or without it, you've created an ExampleTask which will schedule the run function
to be executed sometime in the future.

Schedule to Run Once, or Keep Running

You can specify how your task is run by setting a delay until it starts, and
setting whether it should be run just once or keep running. Have a look at
the first thing we do in our constructor: the call to super at @. The call to super
will in turn call the constructor in the parent class, ServerTask, with the needed
information.

The ServerTask constructor takes three arguments: the server itself, a delay to
wait before running, and a boolean flag that should be true if this task should
keep running continuously, or false if it should be run only once (a one-shot).
If you set it to run continuously, the task will run forever until you cancel it.

We could change the previous example to delay for 60 seconds before running
once:

super(Canary.getServer(), 1200, false);

At 20 ticks per second, 1200 ticks will be about 60 seconds (one minute).

Plugin: CowShooter

Now we have enough parts to make a really fun plugin: the CowShooter. If you
have a piece of leather in your hand in the game world, you can click to shoot
a flaming cow out into the world. When the cow hits the ground, it will explode
in a ball of flame, fire, and hamburger.

This plugin is a little different from what we've seen so far; there’s no @Command
section at all. It’s driven entirely by events.

One problem with a flaming cow is that it won’t stay flaming forever, or even
for very long. Normally a flaming cow will catch fire, then the cow dies and
the fire goes out. That’s not quite suitable for our purposes: we need the cow
to stay on fire as long as it’s flying through the air.

To make that happen, we’ll schedule a task. The task will keep repeating as
long as the cow is in the air, and in that task we can keep the cow alive and
on fire until it hits the ground.

Here’s the code for the main event listener:

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: CowShooter ¢ 141

CowShooter/src/cowshooter/CowShooter.java
@HookHandler
public void onInteract(ItemUseHook event) {

Player player = event.getPlayer();

if (player.getItemHeld().getType() == ItemType.Leather) {
Location loc = player.getlLocation();
loc.setY(loc.getY() + 2);

Cow victim = (Cow)spawnEntitylLiving(loc, EntityType.COW);
Canary.getServer().addSynchronousTask(new CowTask(victim));

fling(player, victim, 3);
victim.setFireTicks(600);
}
}

The ItemUseHook event can mean the player used one of many different items,
so first we’ll need to check and see if the player is holding leather. If the
answer is no, we just ignore the event and life goes on.

But if the answer is yes, we’ll use our fling helper method to increase the cow’s
velocity—we want to fling it in the direction the player is facing. To do that,
we’ll bump up the velocity by multiplying it by 3, as that seems to look pretty
cool." So beginning at @ we spawn a cow, add the new scheduled task, set
its velocity using fling, and light it on fire.

Now as mentioned, there’s a problem with a flaming cow (or anything on fire,
really). It won’t stay on fire for long; it will burn up and die. So that’s what
our scheduled task will take care of: it will keep the cow alive and watch for
it to land.

Here’s the separate class that contains the runnable task:

CowShooter/src/cowshooter/CowTask.java
package cowshooter;

import net.canarymod.Canary;

import net.canarymod.api.entity.EntityType;

import net.canarymod.api.world.position.Location;
import net.canarymod.api.entity.living.animal.Cow;
import net.canarymod.api.world.position.Vector3D;
import net.canarymod.api.world.blocks.Block;
import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.tasks.ServerTask;

1. Sometimes you just have to experiment.

http://media.pragprog.com/titles/ahmine2/code/CowShooter/src/cowshooter/CowShooter.java
http://media.pragprog.com/titles/ahmine2/code/CowShooter/src/cowshooter/CowTask.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 10. Schedule Tasks for Later ® 142

For testing or just playing you might not have a piece of leather handy. Here's how
to get one:

¢ Go into creative mode by typing /gamemode c.

* Press E.

¢ The icon in the upper-right corner is a search bar; click it.

e Start typing leather, and you should see the Leather material appear.

¢ Click it once, then click again on your hotbar (the bottom row of slots in the
inventory) to put it there.

¢ Close your inventory by pressing the escape key, Esc.

e Press the corresponding number (1 through 9) to select the box where you put
the leather.

When you try to go into creative mode you might see an error saying that you don’t
have permission. In that case, you'll need to “op” yourself—that is, give yourself
operator privileges.

import com.pragprog.ahmine.ez.EZPlugin;

public class CowTask extends ServerTask {
private Cow cow;

public CowTask(Cow myCow) {
super(Canary.getServer(), 0, true); // delay, isContinuous
cow = myCow;

}

public void run() {
if (cow.isOnGround()) {
Location loc = cow.getlLocation();
cow.setHealth(0);
cow.kill();
cow.getWorld() .makeExplosion(cow,
loc.getX(), loc.getY(), loc.getZ(),

2.0f, true);
Canary.getServer().removeSynchronousTask(this);
} else {

cow.setFireTicks(600);
cow.setHealth((float)cow.getMaxHealth());

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ¢ 143

If the cow has hit the ground (tested with cow.isOnGround()), then we make the
cow explode and remove this task so it won't run again. We're done. But if
the cow is still flying through the air, then we’ll make sure it’s still on fire
with cow.setFireTicks(600) and bump up its health to the maximum to keep it
alive a little longer. That actually looks a lot crueler in writing....

The result? You wave your leather as a magic wand, and shoot flaming cows
that explode on impact.

The full code for both CowShooterjava and CowTask.java is in code/CowShooter/src/
cowshooter.

Now isn’t that a lot more fun than printing Hello, World?

Next Up

In this chapter you saw some Java mechanics, including how to create a new
class and more on creating objects from classes. But the cool part is being
able to run tasks in the background that keep running, which lets you
implement cool things like flaming, exploding cows.

Next we’ll cover how to save data and remember it despite the game being
shut down, rebooted, or turned off.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Your Growing Toolbox

68%

You now know how to:

Use the command-line shell
Build with Java, javac

Run a Minecraft server

Deploy a plugin

Connect to a local server

Use Java variables for numbers and
strings

Use Java functions

Use if, for, and while statements
Use Java objects

Use imports for Java packages
Use new to create objects

Add a new command to a plugin
Work with Location objects

Chapter 10. Schedule Tasks for Later ® 144

Find blocks/entities

Use local variables

Use class-level global variables
Use ArrayLists

Use HashMaps

Use private and public to control visibility
Modify Minecraft blocks

Modify and spawn entities

Listen for and react to game events
Manage plugin permissions

Create a separate class

Schedule a task to run later
Schedule a task to run periodically

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Now we'll add some storage capability to your toolbox, and discover
some more advanced Java language features. You'll add these skills:

- Save and load user-editable configuration data from a local file
» Save and load your private game data from a database

« Build up more complex code from smaller functions

+ Use Canary's DataAccess to use their built-in database functions
» Understand Java exceptions and annotations

CHAPTER 11

Use Configuration Files
and Store Game Data

Now we're getting someplace. From what you've learned so far, you can listen
for events, schedule tasks to run later, keep data around in lists or hashes,
and let your whole plugin use it as long as the server is up and running. That
puts you in a good position to build some fun plugins. However, you're
missing an important piece: servers don’t run forever.

Any Minecraft server (including yours) can just stop running. You've stopped
yours a bunch of times by now, just to install plugins! Even if you weren’t
installing new plugins, hardware can crash, or maybe you just closed your
laptop. And once the server stops running, your plugin will forget everything
it used to know. All its data is gone.

So we need to figure out how to save important data on disk somewhere,
where we can save it often and load it back in when we need to.

There are two different kinds of data that you might care about:

e Configuration data, which contains things you need to know about how
the plugin should work. This is probably set only once and updated rarely,
but it’s read every time the plugin runs. You've probably used configuration
files in other plugins or in the server setup for Minecraft itself.

e Game data, which contains things like player scores, inventory, and stuff
that changes frequently as the game plays. That gets a little tricky, as
we’ll see shortly.

Let’s look at each of these types of data and how to save and load them.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 146

Use a Configuration File

Many plugins, and the server itself, use configuration files to fine-tune and
customize different values and select different behaviors. A configuration file
is just a simple text file, designed to be read and edited directly by a person.
The idea is that you can customize aspects of the plugin without having to
fool around with the source code or recompile anything. End users, server
operators, developers—everyone can use them. And now we will too.

We're going to modify a plugin to use a configuration file. Previously, on page

a “squid bomb.” We're going to add configuration options to the SquidBomb plugin:

e The number of squid to drop

e The height from which the squid fall

e The ability to get rid of the squid cleanly, or set the squid on fire (a new
feature!)

Lucky for us, the Canary plugins come with a configuration-file mechanism
built in and ready to use. Here’s how it works.

The configuration file itself will be named PluginName.cfg, and placed in a
subdirectory named for the plugin under Server/config. So for our SquidBombConfig
plugin, the config file would be here:

~/Desktop/server/config/SquidBombConfig/SquidBombConfig.cfg

The config file itself looks something like this:

numSquids=6
squidDropHeight=5.0
setFire=false

The format used in this file is a very simple format. In fact, you've been using
it all along—it’s the format of the Canary.inf file also.

Each line represents one setting and has just the name of the value you want
to store (no spaces in the name, please), followed by an equals sign (=) and
then the value. You can store strings, integers, booleans (true or false), dou-
bles, and so on.

If the cfg file doesn’t exist when the plugin starts up, it will create a default
one based on values you set in the plugin. That’s an easy way to get started;
once the file is created, you (or a user or server operator) can go in and make
changes to the file on disk.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Use a Configuration File ® 147

Let’s look at how to modify the plugin code to use a config file. The important
part is in the enable() function. As it first starts up, it'll go and grab values
from the configuration file and set them into a few static variables for our
plugin to use. Here’s what I added:

SquidBombConfig/src/squidbombconfig/SquidBombConfig.java
private static int numSquids;

private static double squidDropHeight;

private static boolean setFire;

// Server/config/SquidBombConfig/SquidBombConfig.cfg:
// numSquids=6

// squidDropHeight=>5

// setFire=false

public boolean enable() {
super.enable();//Compiler will call this if you don't
logger.info("Getting config data");
PropertiesFile config = getConfig();
numSquids = config.getInt("numSquids", 6);
squidDropHeight = config.getDouble("squidDropHeight", 5.0);
setFire = config.getBoolean("setFire", false);
config.save(); // Create a new one if needed
return true;

}

First, we call getConfig() to get the PropertiesFile object for our plugin. (If there is
no actual file yet, we’ll get an empty object instead.) With this we can now
make calls to get values out of the config file.

Each call to read data looks like config.getType(), where Type is the type of the
variable you're trying to get, so you have getint, getDouble, getBoolean, getString,
and such.

Note that you have to use the camel-case version of the data type, so it’s getint,
not getint; getBoolean, not getboolean; getDouble, not getdouble; and so on.

Using functions named getXXX and setXXX to read and save variables is a
pretty standard part of Java. We refer to these kinds of functions as getters
and setters. Okay, perhaps not the most original names.

For each of the config file getters, you can specify a default value to use in
case that setting isn’t in the file. So for instance, calling:

numSquids = config.getInt("numSquids", 6);

will set numSquids to 6, even if the setting for numSquids doesn’t exist in the
config file, or if the file doesn’t even exist at all. If there is a setting in the file,
then numSquids will be set to that value.

http://media.pragprog.com/titles/ahmine2/code/SquidBombConfig/src/squidbombconfig/SquidBombConfig.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 148

At the end of our function we’ll call save(). In case the actual configuration file
didn’t exist yet, this will create it with default values. Otherwise, if we haven’t
changed any values, it won’'t do anything,.

Later in the plugin, we’ll use these static, class-level variables instead of the
hard-coded numbers we used in the previous version:

SquidBombConfig/src/squidbombconfig/SquidBombConfig.java

double y = loc.getY();

loc.setY(y + squidDropHeight);

me.chat("Spawning " + numSquids +

// Spawning some squid. Derp.

for (int 1 = 0; i < numSquids; i++) {
spawnEntitylLiving(loc, EntityType.SQUID);

squid.");

}
Easy peasy.

Try This Yourself

Run build.sh on your new SquidBombConfig plugin and try the squidbombc com-
mand—it should work exactly as it did in the previous version (but this version
has a “c” at the end, so it’s squidbombc).

Now go to your server’s config directory, and you’ll see a new SquidBombConfig
directory. In that directory you'll find your new SquidBombConfig.cfg file:

~/Desktop/server$ cd config

~/Desktop/server/config$ 1s

SquidBombConfig motd. txt plugin priorities.cfg worlds
db.cfg ops.cfg server.cfg
~/Desktop/server/config$ cd SquidBombConfig/
~/Desktop/server/config/SquidBombConfig$ 1s

SquidBombConfig.cfg

~/Desktop/server/config/SquidBombConfig$ cat SquidBombConfig.cfg
numSquids=6

squidDropHeight=5.0

setFire=false

Here I used the command cat to dump out the contents of the file.

Edit that file, and change the number of squid to something larger, say 12
or so. Save the file and restart your server.

Now when you run the SquidBomb command, you are inundated with squid.

Congratulations! Your users now have the ability to tweak your plugin without
needing access to the source code at all.

http://media.pragprog.com/titles/ahmine2/code/SquidBombConfig/src/squidbombconfig/SquidBombConfig.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: SquidBombConfig ® 149

All these squid piling up are probably messing up your world a bit, so we
need a way to quickly purge the world of all squid. To launch the Great Squid
Purge, I added a command squidpurge to this plugin (we’ll look at the source
in just a second). Give it a try.

You can also change the behavior of plugins, not just change limits and
quantities. Go back to the SquidBombConfig.cfg file and change setFire to true.
Restart the server, and now when you purge squid they’ll be set on fire instead
of just dying.

A dozen flaming squid.

Plugin: SquidBombConfig

Let’s look at the full code for our final SquidBombConfig plugin.

SquidBombConfig/src/squidbombconfig/SquidBombConfig.java
package squidbombconfig;

import java.util.Collection;

import java.util.Iterator;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.blocks.Block;

import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.api.entity.EntityType;

import net.canarymod.api.entity.living.EntityLiving;
import net.canarymod.api.entity.living.animal.Squid;
import com.pragprog.ahmine.ez.EZPlugin;

import net.visualillusionsent.utils.PropertiesFile;

public class SquidBombConfig extends EZPlugin {
private static int numSquids;
private static double squidDropHeight;
private static boolean setFire;

// Server/config/SquidBombConfig/SquidBombConfig.cfg:
// numSquids=6

// squidDropHeight=5

// setFire=false

public boolean enable() {
super.enable();//Compiler will call this if you don't
logger.info("Getting config data");

http://media.pragprog.com/titles/ahmine2/code/SquidBombConfig/src/squidbombconfig/SquidBombConfig.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

YYYYYYYYYYVYYYYYYVYYYYVYY

Chapter 11. Use Configuration Files and Store Game Data ¢ 150

PropertiesFile config = getConfig();

numSquids = config.getInt("numSquids", 6);

squidDropHeight = config.getDouble("squidDropHeight", 5.0);
setFire = config.getBoolean("setFire", false);
config.save(); // Create a new one if needed

return true;

}

@Command (aliases = { "squidbombc" },
description = "Drop a configurable number of squid on your head.",
permissions = { "" },

toolTip = "/squidbombc")
public void squidbombCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
Location loc = me.getlLocation();
double y = loc.getY();
loc.setY(y + squidDropHeight);
me.chat("Spawning " + numSquids +
// Spawning some squid. Derp.
for (int i = 0; i < numSquids; i++) {
spawnEntitylLiving(loc, EntityType.SQUID);

squid.");

}
}
}
@Command(aliases = { "squidpurge" },
description = "Get rid of squid.",
permissions = { "" },

toolTip = "/squidpurge")
public void squidpurgeCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;

Collection<EntityLiving> squidlist = me.getWorld().getEntityLivingList();
for (EntityLiving entity : squidlist) {
if (entity instanceof Squid) {
Squid victim = (Squid)entity;
if (setFire) {
victim.setFireTicks(600);
} else {
victim.setHealth(0.0f);

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Store Game Data in a Database ® 151

The arrows show where I've added the squidpurge command. I get a list of all
squid in your world with me.getWorld().getEntityLivingList() and then traverse the
list with an iterator. For each squid, depending on the setting in the config
file, I can then decide whether to set it on fire, like this:

victim.setFireTicks(600);

or just kill it by setting its health to zero suddenly:

victim.setHealth(0.0f);

So with just a humble if statement and a config file, you can have your plugin
users tune your plugin’s behavior without modifying the source code. Sweet.

Store Game Data in a Database

That’s great for configuration data, but not so useful for game data—data
that changes as the game plays on, like player scores and status, inventory,
health, and things like that. We need to access data a little differently, and
be able to write game data from the plugin as well as read it.

There is one important limitation to storage approaches, however. You can
only save and load simple types: strings, integers, floating point, and boolean
values. You can’t save Minecraft-specific objects—things like Location or Player.
You can save a player’s name as a String, and save a Location as a set of double
X-, y-, and z-coordinates, but you can’t save the Minecraft objects directly.

That turns out to be a reasonable limitation, because you really should not
store Player objects, worlds, locations, or other “live” game elements.

Keep in mind that the game is still playing in real time. Players log off, they
change locations, blocks change types, and things catch on fire, fall, and go
in and out of inventory, all while your code is running. If you store a Player
object on disk, or even in a list in memory, there’s no guarantee that object
will still be valid when you go to use it the next day or next week. In fact,
odds are it probably won’t be valid. All a player needs to do is disconnect and
reconnect, and bam—the old Player object is no longer valid.

So instead of storing a Player object, you store the player’s name. When you
load the data back in and are ready to use it, you'd check to make sure the
player is actually online.

Now there are two ways to go about saving and loading game data using
Canary. One is to use a full-fledged SQL database like SQLite or MySQL,
using the SQL language to search for and store data. But that’s a lot more
complicated than we have space to cover here. If you're dealing with thousands

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 152

of users on a large server, and complicated sets of nested data, you may need
to look into the SQL techniques. There’s an official tutorial online." But it'’s a
much more advanced and potentially confusing topic, even for professionals.

On the other hand, if your data needs are relatively flat and simple, and you're
only dealing with hundreds of users, then Canary has a nice option for you:
DataAccess objects and the Database front end.

When dealing with databases, the words we use to describe things are a little
different from the words we use in code. In code, you might have a class or
a record, made up of variables, or fields. Databases have these same things,
but we call fields columns. A bunch of columns are grouped together in a
table.

And since searching for records is a big part of databases, we have a new
word for the thing we might search for the most: a table’s primary key field.
A primary key means there’s only one record in that table with that value.
For instance, player_ name might be a good primary key, because every user has
a unique name, so it’s an easy way to find an individual player.

DataAccess objects

In the Canary API, you can create a DataAccess object that defines what you
want to store in a database. For example, suppose you want to store the
location of a player. You'd want to be able to save and look up that record by
the player’s name, and maybe save the x-, y-, and z-coordinates.

To do that, you'd start with a separate class, derived from DataAccess, that just
has the data you want to load and save:

public class AllPlayerLocations extends DataAccess {
public String player name;
public double x;
public double y;
public double z;
}

That’s the data itself, but Canary needs a few more things before you can use
this with a database.

First off, it needs to know what to call this field in the database, and what
type of data it represents. For each of x, y, and z, we’ll name the database
field the same thing as the variable. Each of these is a Java double. You'd
specify these details using the @Column annotation, like this:

1. http://docs.oracle.com/javase/tutorial/jdbc/basics/processingsglstatements.html

http://docs.oracle.com/javase/tutorial/jdbc/basics/processingsqlstatements.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Store Game Data in a Database ¢ 153

@Column(columnName = "x",
dataType = DataType.DOUBLE)
public double x;

Now the system will know how to store each coordinate. We can do almost
the same thing for the player’s name:

@Column(columnName = "player name",
dataType = DataType.STRING)
public String player name;

this time, specifying that it’s a String type. But we need to add a little something
extra for the player name. We want this field in the database to be unique: the
primary key. There should only be one record in the database with an x, y,
and z for any one player name. You specify that as the columnType, like this:

@Column(columnName = "player name",
columnType = Column.ColumnType.PRIMARY,
dataType = DataType.STRING)

public String player name;

Now that the columns are specified, you need to name the database table
that will hold these records. You do that right in the constructor:

public AllPlayerLocations() {
super("all player locations");

}

That tells the database that you want to save these fields in a database table
named all_player_locations.

Finally, you need to make this class extend the DataAccess parent class, and
add a method named getinstance that returns an object of this class. So all
together, the final DataAccess class looks like this:

LocationSnapshot/src/locationsnapshot/AllPlayerLocations.java
package locationsnapshot;

import net.canarymod.database.Column;
import net.canarymod.database.Column.DataType;

import net.canarymod.database.DataAccess;

public class AllPlayerLocations extends DataAccess {

@Column(columnName = "player name",
columnType = Column.ColumnType.PRIMARY,
dataType = DataType.STRING)

public String player name;

@Column(columnName = "x", dataType = DataType.DOUBLE)
public double x;

http://media.pragprog.com/titles/ahmine2/code/LocationSnapshot/src/locationsnapshot/AllPlayerLocations.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 154

@Column(columnName = "y", dataType = DataType.DOUBLE)
public double y;
@Column(columnName = "z", dataType
public double z;

DataType.DOUBLE)

public AllPlayerLocations() {
super("all player locations");

}

public DataAccess getInstance() {
return new AllPlayerLocations();
}
}

Let’s see how to use this code within a plugin.

Plugin: LocationSnapshot

Here’s an example of using a DataAccess (in this case, AllPlayerLocations) in a new
plugin, LocationSnapshot. For this plugin, we’ll provide two new commands:

® /savelocations
¢ /loadlocations

You might want to use this kind of feature as part of a competition, where
you can return all players back to their starting points at the end.

The savelocations command, as you’d expect, saves the current locations of all
online players to disk. loadlocations reads them back in and teleports everyone
back to those saved locations. We’ll use Canary’s Database functions with our
AllPlayerLocations DataAccess object to save and load a hash of Players and Locations.

There are two main pieces to this plugin: savelocations and loadLocations. To keep
things clean and start forming better habits, we’ll put the code for each in its
own function.

savelocations
The logic for savelocations will look like this:

LocationSnapshot/src/locationsnapshot/LocationSnapshot.java
private void savelocations() {
List<Player> playerList = Canary.getServer().getPlayerList();
// For all players...
for (Player player : playerList) {
// Save the raw coordinates, not the Location
AllPlayerLocations apl = new AllPlayerlLocations();
apl.player name = player.getDisplayName();
Location loc = player.getlLocation();

http://media.pragprog.com/titles/ahmine2/code/LocationSnapshot/src/locationsnapshot/LocationSnapshot.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: LocationSnapshot ¢ 155

apl.x = loc.getX();
apl.y = loc.getY();
apl.z = loc.getZ();

HashMap<String, Object> search = new HashMap<String, Object>();
search.put("player name", player.getDisplayName());

try {
Database.get().update(apl, search);

} catch (DatabaseWriteException e) {
logger.error(e);
logger.info("error")

}

}
}

Here we run through the list of all online players. For each, we stick their
name and X-, y-, and z-coordinates into a new AllPlayerLocations object. That will
get saved into the database with the call to update() down at @.

How does the database know what to update? You have to pass it a HashMap
that specifies the record you want to update (or create, if this is the first time).
So at @, we’ll build a quick hash that tells the database “update the record
where the field named player_name is equal to this Player’s getDisplayName().”

Now we can call the database’s update function, which looks like this:

try {
Database.get().update(apl, search);
} catch (DatabaseWriteException e) {
logger.error(e);
logger.info("error");

}

Now there’s something we haven’t seen before; what does this extra, mysteri-
ous code do?

Catch Exceptions in Java

See the code block bracketed by the try/catch keywords? The database functions
are declared to “throw exceptions” when something goes wrong (maybe there
was an error writing the file because the disk is full). What’s an exception?

An exception interrupts the code that’s currently being run, throws away the
rest of the function, and jumps straight to the catch block. It's sort of like if
the fire alarm rang right now, you'd jump up and run out, and not finish
reading the page.

If there’s no error, then the catch block will never be run.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 156

To simplify things, our code catches the DatabaseWriteException and just logs the
error—basically just ignoring it. That can be a very “beginner’s” way to handle
exceptions, though, and you shouldn’t always just ignore them. Instead, the
question to ask yourself is “whose problem is it, and who can fix it?”

Normally, code that you're calling in a library has no idea what you’re using
it for. When something bad happens, it doesn’t know what you need to do to
handle the problem. Should the whole server exit? Should you return an error
to the user? Do you need to change some variables and clean up whatever
you were trying to do? Since the library code doesn’t know, it doesn’t try to
fix it. It just raises an exception—it throws up its hands and gives up.

When dealing with exceptions, you have two choices. You can either accept
the responsibility for dealing with any errors and catch and handle the
exception yourself, or you can throw up your hands as well, and pass the
exception up to the caller. To pass the exception up, you just declare that
your function also throws DatabaseWriteException (or whatever the actual exception
type is). You don’t need any try/catch at all; now it’'s someone else’s problem.

In theory, however, exceptions should be used only for exceptional things. If
you went to spawn a cow and instead got a creeper, that would be exceptional:
an unexpected disaster. If you just added a player to a list of players and the
length of the list was still zero, that would indicate a disaster in progress.

But trying to search for something that isn’t in the database, for example,
isn’t a disaster. It's a common occurrence. So in that case you might want to
catch the exception and ignore it.

And what happens if you fail when trying to write data to the database, as
we’re doing here? That might mean there’s a more serious problem—you
might be out of disk space on the server, for instance. What should you do?

If it were me, I'd want to shut down the server as gracefully as possible. A
dead program does a lot less damage than a broken program that’s still run-
ning. When writing code for most professional systems, you'll find that’s
almost always the best action to take: fail quickly and loudly.

But this isn’t our server necessarily; we've just made a plugin that someone
else is running, and it would be rude of us to shut down their server just
because we can't write a file. So in this case, we’ll log an error message to the
Minecraft console and struggle on.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: LocationSnapshot ® 157

loadlocations

Sometime later, when you type the loadlocations command, you'll run through
the list of players who are online and look up their saved location from the
database; convert the x-, y-, and z-coordinates back to a proper Location; and
teleport them there:

LocationSnapshot/src/locationsnapshot/LocationSnapshot.java
private void loadLocations() {
//Go through list of players; if they are in the hash, teleport them.
List<Player> playerList = Canary.getServer().getPlayerList();
for (Player player : playerList) {
String name = player.getDisplayName();

AllPlayerLocations apl = new AllPlayerlLocations();
HashMap<String, Object> search = new HashMap<String, Object>();
search.put("player name", name);

try {
Database.get().load(apl, search);

} catch (DatabaseReadException e) {
logger.info(name + " is not online");
continue;

}

// Reconstitute a Location from coordinates
Location loc = new Location(apl.x, apl.y, apl.z);
logger.info("Teleporting " + name + " to " + printLoc(loc));
player.teleportTo(loc);
}
}

The “save” obviously needs to be done by going through the list of all players
online, and it’s easiest to do the same thing for the load as well. We could
start with a list of all the players we saved in the database, and then check
to see if they are online, but it’s probably easier this way. In either case, there
may have been players who were online before and aren’t now, or vice versa.

So all we have to do is find this player in the database, using a search map
again, and the load function. When we are ready to teleport the player, we
make a new Location object based on the coordinates we saved and off they go.

Compile and install LocationSnapshot and give it a try. Connect from your client
and run the /savelocations command.

Exit your client, stop the server, and restart everything. Go somewhere else
in the game and try the /loadlocations command. You're back at the snapshot
location (as is every other player on your server).

http://media.pragprog.com/titles/ahmine2/code/LocationSnapshot/src/locationsnapshot/LocationSnapshot.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data *® 158

In the server configuration file, server/config/server.cfg, you can choose the back end that
the Database will use for loading and saving. By default, it uses an XML format file,
which will be saved in the server/db directory.

You can change that to use any of xml, mysql, or sqlite by editing this line in the server
config file:

data-source=xml

For better performance, you can just change that option to sglite without having to
do any additional configuration. To use the even higher performance mysqgl option,
you'd need to set it up using server/config/db.cfg and run a MySQL server.

U,
Plugin: BackCmd with Save

Using the same ideas as with LocationSnapshot, you're going to add data storage
to the BackCmd plugin so that you can save the locations across server restarts.
I'll provide the outline and function signatures, but you will be writing the
bodies of the functions, the actual code to make it work. Buckle up!

Now, the BackCmd plugin is a little more complicated than our simple Location-
Snapshot. As you may remember from the plugin on page 128, the BackCmd plugin

tracks more than just a location per player; it tracks a Stack of Location objects
for each player.

Bear in mind that the Database system can’t actually store Location objects. It
can store a list, which we can use as a stack, but it can only store a list of a
single basic type. It cannot store a list of separate x-, y-, and z-coordinates,
or a list of arrays. So we're going to cheat a bit: we’ll store the coordinates in
a string when we write, and pull them back out from a string into separate
doubles when we read.

Here’s your to-do list for the code you're going to write:
* Create a SavedLocation, which will be a DataAccess object.

e The main plugin deals with players, and will want to just add a new Location
and retrieve the last location for a given player. So it makes sense to make
the SavedLocation look like a stack, with a pop and push method.

e Because SavedLocation will just look like a stack to the plugin, it will do the
database load and save functions internally (as private functions). You’ll
need to write the private functions in SavedLocation that call the Database
and check for any exceptions.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd with Save ® 159

e Write a conversion function that takes a Location object and returns a string

“w »

that contains each coordinate, separated by “,” characters.

e Write a conversion function that takes a string of coordinates, separated
by “,” characters, and builds a Location object.

Now that’s just a first pass at what you might need to do. As we go along,
other things might come up, and that’s okay: that’s how software development
really works.

And as you go along, don’t be shy about adding logger.info() messages to help
trace what the plugin is doing.

Okay, you have your hands full. I'll get you started.

Create a SavedLocation Class

Since you can't save a stack of Location objects directly to disk, you need to
make an object that you can save to disk: a DataAccess object. You'll create a
SavedLocation that will save a list of strings for each player.

Let’s get started writing some code. Go into the BackCmd plugin’s src/backcmd
directory and create a new file named SavedLocation.java. The first thing you’ll
need is a package statement and some imports.

The start of your SavedLocation class will look like this:

BackCmdSave/src/backcmdsave/SavedLocation.java
package backcmdsave;

import java.util.ArrayList;

import java.util.HashMap;

import net.canarymod.database.Column;

import net.canarymod.database.Column.DataType;
import net.canarymod.database.DataAccess;

import net.canarymod.database.exceptions.*;
import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.World;

import net.canarymod.database.Database;

import net.canarymod.Canary;

public class SavedLocation extends DataAccess {
Copy that into your new file, or type it in as we go.

Next up you’'ll need to add the @Column annotations to describe the fields you
want to save in the database. Remember, you’ll need two fields:

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ¢ 160

e player_name — a string, and a primary key, just like we used in the Location-
Snapshot plugin.

e location_strings — a list of strings. To make a list for a field, add the param-
eter isList = true to the annotation, and make the variable a list of strings:
ArrayList<String> instead of just a plain String.

Give that a try now. You should end up with something that looks like this:

BackCmdSave/src/backcmdsave/SavedLocation.java

@Column(columnName = "player name",
columnType = Column.ColumnType.PRIMARY,
dataType = DataType.STRING)

public String player name;

@Column(columnName = "location strings",
dataType = DataType.STRING,
islList = true)

public ArraylList<String> location strings;

You need two more things before this piece of code will even compile, just like
we did up in the SavedLocation plugin:

¢ Add a default constructor that supplies a name for this table in the
database (let’s call it "saved_player locations")

¢ Add a function named getinstance that returns a new one of these as a
DataAccess object.

¢ Add one extra thing: a constructor that takes a string for the player name.
In the body of the constructor, youll need to call super just like in the
default constructor, then make the assignment to player_name.

When you're all done, it should like something like this:

BackCmdSave/src/backcmdsave/SavedLocation.java
public SavedLocation() {
super("saved_player_locations");

}

public SavedLocation(String name) {
super("saved player locations");
player name = name;

}

public DataAccess getInstance() {
return new SavedLocation();

}

Make sure that much compiles, using build.sh as usual.

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd with Save ® 161

Read From and Write To the Database

As far as the database knows, we're dealing with only two fields, player_name
and location_strings, which use the player name as a key.

Looking back at LocationSnapshot, you can copy the database’s load and update
functions, with the exception handling, and make two new functions here:

private void myRead(final String name) {

}

private void myWrite() {

}

In each function, set up the search HashMap, then do the Database’s load or
update in a try-catch block.

Go try that now. When you're done, you should have something like this:

BackCmdSave/src/backcmdsave/SavedLocation.java
private void myRead(final String name) {
player name = name;

HashMap<String, Object> search = new HashMap<String, Object>();
search.put("player name", name);

try {
Database.get().load(this, search);
} catch (DatabaseReadException e) {
// Not necessarily an error, could be first one
}
if (location strings == null) {
player name = name;
location strings = new ArraylList<String>();
}
}

private void myWrite() {
HashMap<String, Object> search = new HashMap<String, Object>();
search.put("player name", player name);

try {
Database.get().update(this, search);
} catch (DatabaseWriteException e) {
//Error, couldn't write!
System.err.println("Update failed");
}

}

Make sure that much compiles, using build.sh as usual.

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 162

Now you've got a DataAccess class that will update and load from the database.
But there’s no good way to connect it to the plugin yet, so we need to take a
look at that.

Convert Location to String and Back

Before we get much further, we may as well jump in and tackle the conversion
functions for a Location, as we’ll need those before we start working on the
stack bits.

Converting a Location to a string is easy: just build a string from each of the
getX(), getY(), and getZ() results using a non-numeric character to separate each
number. You could use spaces, or commas, but I prefer commas (“,”) as that
seems easier to read.

Write a function named locationToString that takes a Location and returns a String.

But now how to go the other way? Given a string that looks like "110,75,220",
how can you split it up into three parts, one for each number?

Java to the rescue! In the Java doc under String, you'll find a function named
“split”, which takes a string and splits it up into an array. So if str="110,75,220",

then str.split(","); would return an array of three strings, "110", "75", and "220".
Then it’s just a matter of using Double.parseDouble(string) to convert each string
into a double. With the doubles, you can create a new Location.

Now you can write a function named stringToLocation that takes a String and
returns a Location.

When you're done, it might resemble this:

BackCmdSave/src/backcmdsave/SavedLocation.java
private String locationToString(Location loc) {
return loc.getX() + "," +
loc.getY() + "," +
loc.getZ();
}

private Location stringTolLocation(String str) {
String[] arr = str.split(",");
double x = Double.parseDouble(arr[0]);
double y = Double.parseDouble(arr[1]);
double z = Double.parseDouble(arr[2]);
return new Location(x, y, z);

}

Make sure that much compiles, using build.sh as usual.

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd with Save ® 163

Act Like a Stack

Even though this is a DataAccess object, we are free to add other functions and
bits of data to it to help make building our plugin easier. So from the perspec-
tive of the main plugin, we’d like to be able to treat a SavedLocation for a given
player as a stack of Locations. That means we’ll need to expose at least a public
push and pop function.

Here’s the first hitch: location_strings is declared as an ArrayList<String>, not a Stack.
So how would you implement push and pop using just a plain old list?

Well, the push is easy: an array add method will add a new item to the end of
the list. So you just use that for the push.

In order to pop the stack, you have to remove the last item in the list using its
index, the size() of the list minus one.

Okay, that sounds reasonable. In the public push functions, you'll need to
read this player’s stack from the database; call an internal, private function
to actually push that location onto the stack; then save it back to the database.
pop will be similar: read from the database, pop the stack, and write the new
stack back to the database. If you remember back in the BackCmd plugin, it
wasn’t just enough to pop the latest value—we had to use an equalsish function
to make sure we’d moved far enough away from the teleport location.

Putting it all together, the public functions in SavedLocation would look like this:

BackCmdSave/src/backcmdsave/SavedLocation.java
public void push(Location loc) {
myRead (player name);
//Make sure previous location is different if it exists
if (peek stack() == null ||
lequalsIsh(peek stack(), loc)) {
push_stack(loc);
myWrite();
}
}

public Location pop(Location here) {
myRead (player name);

if (location strings.size() == 0) {
return null;

}

Location loc = pop stack();

myWrite();

return loc;

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 164

There are a few things you still need to write: the internal push_stack, pop_stack,
and peek_stack functions, and the database functions, myRead and myWrite. You
can copy the equalsish function straight from the BackCmd plugin.

Let’s get started on the internal stack functions first. We want to be able to
pass in a Location to the push, and get a Location back from the peek and pop,
so use the conversion functions locationToString and stringToLocation.

Go give that a try on your own first. When you're done, come check back here
and see if it looks close to this:

BackCmdSave/src/backcmdsave/SavedLocation.java

private void push stack(Location loc) {
String s = locationToString(loc);
location strings.add(s);

}

private Location peek stack() {
if (location strings.isEmpty()) {
return null;

}
String s = location strings.get(location strings.size()-1);
return stringTolLocation(s);

}

private Location pop stack() {
Location loc = peek stack();
location strings.remove(location strings.size()-1);
return loc;

}

Make sure that much compiles, using build.sh as usual.

Add Save and Load to BackCmd

Now that you have a SavedLocation that knows how to push and pop individual
locations for a Player, it’s time for you to add the code into BackCmd.java, which
will call them.

Open up BackCmd.java and start making the following changes:

¢ In onTeleport, delete all the code in the else portion of the block, and replace
it with code that creates a new SavedlLocation and calls its push with the
player’s location.

* In backCommand, get the location to teleport to by creating a new SavedLocation
and calling its pop to get the latest value.

The new plugin main class should end up looking like this:

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/SavedLocation.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Plugin: BackCmd with Save ¢ 165

BackCmdSave/src/backcmdsave/BackCmdSave.java
package backcmdsave;

import java.util.ArraylList;

import java.util.HashMap;

import java.util.List;

import java.util.Stack;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.position.Location;
import net.canarymod.hook.HookHandler;

import net.canarymod.hook.player.TeleportHook;
import net.canarymod.plugin.PluginListener;
import com.pragprog.ahmine.ez.EZPlugin;

public class BackCmdSave extends EZPlugin implements PluginListener {
private static List<Player> isTeleporting = new ArrayList<Player>();

@Override

public boolean enable() {
Canary.hooks().registerListener(this, this);
return super.enable(); // Call parent class's version too.

}

@HookHandler
public void onTeleport(TeleportHook event) {
Player player = event.getPlayer();
if (isTeleporting.contains(player)) {
isTeleporting.remove(player);
} else {
SavedLocation sp = new SavedLocation(player.getName());
sp.push(player.getLocation());

}
}
@Command(aliases = { "dback" },
description = "Go back to previous places that you teleported to.",
permissions = { "" },

toolTip = "/dback")
public void backCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;

SavedLocation sp = new SavedLocation(me.getName());
Location loc = sp.pop(me.getLocation());

http://media.pragprog.com/titles/ahmine2/code/BackCmdSave/src/backcmdsave/BackCmdSave.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 11. Use Configuration Files and Store Game Data ® 166

if (loc != null) {
isTeleporting.add(me);
me.teleportTo(loc);

} else {
me.chat("You have not teleported yet.");

}
}
}

(I renamed the command to be “dback” so it would be different from the
existing BackCmd. You're welcome to rename it also, or just use it instead of
the old “back.”)

Now compile and install the whole mess with build.sh, and you're good to go.

Test It
Assuming everything worked, you should be able to test it:

1. Start the server.
Connect from your client.

3. Teleport to a new place, either by using the /tp command or by throwing
an Ender Pearl. Do this a few times.

4. Disconnect and shut down the server.

Restart and reconnect.

6. Now type the /back command in the client. Your history was saved and
reloaded from disk, and you should be able to go back to each teleport
point.

o

wOOt.

Try This Yourself

You know what we need? A “clearback” command so that we can clear out
our teleport history (Canary already provides a “clear” command, so you need
to call it something other than that).

Go ahead and implement that. It's a new command, so you'll need a new
@Command section and function. In the code, all you need to do is to clear out
the stack for the player and save it back to the database.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ® 167

Next Up

That was fun! And you're almost done. This is the last batch of Java techniques
you needed. Now that you're able to save and load data from the database,
use Java file functions, and handle Java exceptions, you're in good shape.

In the next chapter we’ll switch things up a bit, and instead of writing code,
we'll look at a technique to help manage the code you write. You're going to
set up a giant “undo button” for your plugin project code.

After that, you'll be ready to wrap up with a walk-through of how to design
your very own plugin from scratch.

Your Growing Toolbox

81%

You now know how to:

e Use the command-line shell e Use class-level global variables
Build with Java, javac Use ArrayLists
Run a Minecraft server Use HashMaps

¢ Deploy a plugin e Use private and public to control visibility
e Connect to a local server ¢ Modify Minecraft blocks
e Use Java variables for numbers and e Modify and spawn entities
strings ¢ Listen for and react to game events
¢ Use Java functions e Manage plugin permissions
e Use if, for, and while statements ¢ Create a separate class
e Use Java objects e Schedule a task to run later
e Use imports for Java packages e Schedule a task to run periodically
e Use new to create objects e Save and load configuration data
¢ Add a new command to a plugin ¢ Build up complex code from simple func-
e Work with Location objects tions
¢ Find blocks/entities e Save and load plugin game data
e Use local variables ¢ Use DataAccess to use the database

e Catch and throw Java exceptions

report erratum

« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter we'll add Git to your arsenal. With Git you can change your
code without fear that you'll lose anything or mess anything up. You'll add
these skills to your toolbox:

+ How to install Git

« Use Git to keep track of changes to code

» Go back to earlier versions of code (an “undo button”)
+ Maintain multiple versions of code at the same time

+ Back up your code to the cloud

Git gives you one of the most powerful tools of all: an “undo button” for

your project. CHAPTER 1 2

Keep Your Code Safe

By now you might recognize a certain frustrating moment when coding:
everything was working just fine, but you added a couple of lines of code in
a couple of different files, and now nothing works anymore. What changes did
you make? Which one messed everything up? Was it in this file or that one?

Wouldn't it be great to be able to press a sort of giant “undo button,” to toss
out this set of changes that didn’t work out so well, and go back to the code
from a few minutes ago that was working all right so you can try again?

Have I got a treat for you.

You can use a tool named Git to do exactly that and more. Git acts like a
huge memory of all the changes you make to your code. You can go back in
time to any previous point, even if you've accidentally deleted a file or renamed
it, moved code from one file to another, and so on—Git will track it all for you.
In addition, you can set it up so that a copy of Git’s memory can be backed
up in the cloud, so even if your whole computer gets damaged or stolen, all
of your source code and the full memory of it are safe. You can restore it to
your new computer or a friend’s computer and continue on.

You don’t have to use this kind of tool, but I really, really recommend it. It's
not hard to set up, and the first time it saves you from stupidly clobbering a
file it will be worth it.

There are tons of tutorials and how-tos for Git on the Web, and a lot of books
as well, but we’ll take a quick pass at the basics here to get you started.

Install Git

First off, you need to download and install the Git software for Windows, Mac,
or Linux from http://git-scm.com.

http://git-scm.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe ¢ 170

Once it’s installed, you should configure it globally with your name and email
address:

$ git config --global user.name "Your Name"
$ git config --global user.email "you@example.com"

The Git distribution for Windows includes a well-intentioned but problematic version
of the Bash shell. Readers tell me it doesn’t work very well. In the Git installer for
Windows, you’ll want to choose “Run Git from Windows command prompt” instead
of selecting the default “Git bash” option.

Also, you may run into complaints about line-ending differences. Windows uses the
CR LF characters to mark the end of lines, and other systems just use LF. Java is
fine with either convention, and so are most editors. But git may warn you that it’s
trying to convert line endings; don’t worry about it.

You set up Git once per project. Let’s do that right now, in the CowShooter plugin.
cd to the top-level CowShooter directory and type git init:

$ cd CowShooter/

$ 1s
Canary.inf Manifest.txt bin build.sh dist src
$ git init

Initialized empty Git repository in /Users/andy/Desktop/code/CowShooter/.git/

That creates a magical, hidden directory named .git where Git will store its
memories—what Git calls your repository. You need to do this only once for
each project, which in our case will be once per plugin.

Remember Changes

Now that you have Git, you need to tell it which of your files it needs to
remember. You don’t actually want all of them.

Typically you don’t want to store .class or .jar files, as those can always be
created again. You definitely want Git to remember all your .java source code,
and your plugin-configuration file and build script.

So first thing, let’s clean up the plugin directory and get rid of the extra junk:

$ rm -r bin
$ rm -r dist

That removed the generated .class and .jar files. Now you're left with a clean
directory tree, with the files you want Git to remember and track changes for.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Remember Changes ¢ 171

You use git add files..., where files can be individual file or directory names.
Since for now you want everything in the current directory from here on down,
you can just type git add .:

$ git add .

@ 9

(Remember that “.” means the current directory.) Now Git knows to watch all
these files.

But it hasn’t yet taken a snapshot of the current state of your files. To have
it do that, you have to commit your changes:

$ git commit -a -m 'My first commit'

That command will record the current state of your source code in Git's
repository. The -a means to commit changes in all the tracked files, and the
-m lets you specify a message.

The message is very important: it's how you can tell what you were doing
when you changed these files. If you use a wonderfully descriptive message
like “I did stuff,” then this won’t help you any.

Let’s play with that a moment. Create a new file in the CowShooter directory
and name it README.txt. Put anything you want in the file: comments about
the plugin, your own personal manifesto, nonsense text, whatever.

Now add the file and commit the add:

$ git add README.txt

$ git commit -a -m "Add my personal screed"
[master 50847c8] Add my personal screed

1 file changed, 1 insertion(+)

create mode 100644 README.txt

To see the history of your commit messages, you use git log:

$ git log

commit 50847c8a3e60dbfc8f441894202765eb23fbd9a5
Author: Andy Hunt <andy@toolshed.com>

Date: Fri Jan 7 15:51:22

Add my personal screed
commit aa58dfa87fa79b0le2c7cel72bbcdd41b7e962d6
Author: Andy Hunt <andy@toolshed.com>
Date: Tue Jan 7 15:50:31

First Commit

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe ® 172

That shows the full log entries, with the long version of the commit identifier,
the author, the date, and the log message. Those long, random-looking strings
(which are cryptographically interesting SHA1 hashes, in fact) identify each
commit. But they are really long. Usually you can just use the first four to
eight characters of the hash as long as that produces a unique string.

You can get a more concise report of the same information by using this:

$ git log --oneline
50847c8 Add my personal screed
aa58dfa First Commit

The shorter version of the commit hash is usually all you need.

So remember: when you create a new file and need Git to track it, don’t forget
to do the add:

$ git add myNewFile.java

And then do a commit to save a snapshot of all your files in the repository.
You can always check to see what files Git knows about, which ones it doesn't,
what'’s been committed, and what hasn’t, by typing this:

git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
bin/
dist/
nothing added to commit but untracked files present (use "git add" to track)

H* H B B e

Oops! I must have done a compile in there somewhere, because the bin and
dist directories are back. That’s fine, as we don’t want Git to track them, but
we also don’t want Git to complain about them every time.

If these were files you cared about, you would just do the git add so that Git
can track them. But in this case, we don’t want Git to ever track these direc-
tories. We want it to ignore them. Here’s how to make that happen:

1. Create a file named .gitignore in this directory (if there isn’'t one already;
mkplugin.sh will make an empty one for you).

2. In the file, put the names of the files or directories you want to ignore.
3. Add the file and commit it.

In this case the .gitignore file will look like this:

bin
dist

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

An Easy Undo * 173

Then we’ll add it and commit just that one file by specifying the file name
instead of the -a we usually use:

$ git add .gitignore

$ git commit .gitignore -m 'ignoring bin and dist’

[master ccOe424] ignoring bin and dist

1 file changed, 2 insertions(+)
create mode 100644 .gitignore

Let’s see what git status tells us now:

$ git status
On branch master
nothing to commit, working directory clean

Great! We got the reassuring message “nothing to commit, working directory
clean.” That message is what you want to see when you're finished coding for
the time being.

Now add some text to the bottom of README.txt, save the file, and try git status
again:

$ git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: README. txt

no changes added to commit (use "git add" and/or "git commit -a")

Ah, that’s clever: Git recognized that you’d made some changes to the README.txt
file and that those changes haven’'t been saved yet. A commit will fix that,
and once again you can get the relaxing “nothing to commit, working directory
clean” message:

$ git status
On branch master
nothing to commit, working directory clean

So there’s one important rule to remember:

Don’t leave the scene until the working directory is clean.

An Easy Undo

Say you're going along and accidentally remove a file from your plugin direc-
tory. Or maybe you made a series of edits that turns out to be a really bad
idea, and you want to go back. Oops. Have no fear: we've all done it.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe ® 174

In fact, let’s do it now, deliberately—and see how to fix it, using the CowShooter
plugin where you've set up a Git repository.

Bring up CowShooter/src/cowshooter/CowTask.java, and somewhere randomly in the
middle of the file, type some nonsense like “Zombie cows are coming! Run for
your life! Braaaainsss....” That will do for our example of making a mistake
in a file. Java, of course, is not hip to our warning of the impending zombie-
cow apocalypse, and has no idea what this means. Try to compile with build.sh,
and you’ll see a plethora of angry error messages like this:

src/cowshooter/CowTask.java:20: illegal start of type

Zombie cows are coming! Run for your life! Braaaainsss....
src/cowshooter/CowTask.java:20: <identifier> expected

Zombie cows are coming! Run for your life! Braaaainsss....
src/cowshooter/CowTask.java:22: ';' expected

public void run() {
src/cowshooter/CowTask.java:22: invalid method declaration;
return type required

public void run() {

Argh! Something we typed blew up the compile. Now, if this were a real
emergency you wouldn’t know it was the bogus zombie warning text you just

typed in.

So there’s an interesting question: what has changed locally in your files that
is different from the last time you did a commit (that is, took a snapshot)?

You can see what's changed by using git diff:

$ cd src
$ cd cowshooter
$ git diff CowTask.java
diff --git a/src/cowshooter/CowTask.java b/src/cowshooter/CowTask.java
index 4894201..556d0d3 100644
--- a/src/cowshooter/CowTask. java
+++ b/src/cowshooter/CowTask. java
@@ -16,6 +16,8 @@ public class CowTask extends ServerTask {
cow = myCow;
}
+
+Zombie cows are coming! Run for your life! Braaaainsss....

public void run() {
if (cow.isOnGround()) {

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

An Easy Undo ® 175

The output has some gunk at the top and then a few lines from the middle
of CowTask.java, including two marked with plus signs (+). Those are the two
lines that were added. Ah, that’s the problem! Adding those lines was a bad
idea; in fact, it would be nice just to scrap everything since the last commit,
and restore this file to how it was before.

If you haven’t committed a file yet, you can always get back to the last commit
(like a save point in a game) by typing this:

$ git checkout MyMessedUpFile.java

Silently but surely, MyMessedUpFile.java goes back to the way it was. Anything
you typed in since the last commit is gone. Vanished.

So in our case, we can do this:

$ cd src/cowshooter

$ 1s

CowShooter.java CowTask.java
$ git checkout CowTask.java

Now CowTask.java is back to a known, running state. We can even recompile:

$ cd ~/Desktop/code/CowShooter

$./build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

So, it’s easy to throw out bad changes and get back to the last save point.
But what if you committed bad changes a while back, and only noticed the
problem now? You can use the same checkout command, but this time
specify which commit to fetch.

Let’s try that now. Go back into CowTask.java and add the bad zombies line
again. But now commit it with this:

$ git commit -a -m 'Added zombie warning'
[master e4eel98] Added zombie warning
1 file changed, 2 insertions(+)

Now let’s break it even worse. Find the line that says
private Cow cow;
and delete it. Commit that as well:

$ git commit -a -m 'Deleted variable declaration'
[master 44b39f3] Deleted variable declaration
1 file changed, 3 deletions(-)

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe * 176

Now let’s see what the log says for CowTask.java (in the src/cowshooter/ directory):

$ cd ~/Desktop/code/CowShooter/src/cowshooter
$ git log --oneline CowTask.java

44b39f3 Deleted variable declaration
e4eel98 Added zombie warning
aa58dfa First Commit

Your commit IDs, those magic numbers that are listed on each line, will be
different from mine. But let’s use mine for this example.

So in this case, we want to go back to the last known good version of this file.
That means we want to skip back past commits 44b39f3 and e4eel98, and
check out this file at my commit ID aa58dfa, when life was happy:

$ git checkout aa58dfa CowTask.java
(Remember, your commit ID will be different.)

And silently but surely, CowTask.java reverts to its previous state, back before
you added the zombie text and before you deleted those variables.

Now the file has actually been changed, just as if you'd edited it by hand, so
be sure to commit this latest change with an appropriate message (perhaps
something like “That was a bad idea; back to the drawing board.”):

$ git commit -a -m 'That was a bad idea'
[master 0b6bO51] That was a bad idea
1 file changed, 3 insertions(+), 2 deletions(-)

Our bad code hasn't been forgotten; just like a bad day at school or a rotten
quiz grade, it’s part of history, as git log reveals:

$ git log --oneline CowTask.java

0Ob6b051 That was a bad idea

44pb39f3 Deleted variable declaration

e4eel98 Added zombie warning
aa58dfa First Commit

And if you really wanted to, you could even go back to the bad version of the
code at commit 44b39f3 or commit e4eel98. That's part of Git's beauty: it
remembers everything, good and bad, and you can always go back in time.

You can use this same idea for multiple files that were involved in the same
commit—by specifying all the files you need instead of just the one. You can
even do it across the entire project—just don’t specify any file to git checkout,
and it will operate on the whole project repository.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Visit Multiple Realities ® 177

Visit Multiple Realities

Being able to revert to a previous commit is great; it’s like time travel. You
can always revisit your past. But why stop at just one past?

Git has a really neat feature called “branches.” These aren’t like branches on
a tree, but more like branches in the space-time continuum: they are alternate
realities, or alternate timelines like in science-fiction stories.

Here’s how you might use branches: Suppose you have everything working,
and maybe you've even released your plugin to the world. You want to
experiment with a new feature or two, but you need the current version of
your plugin around as well, in case there are any fixes you need to make for
your users. You need two different timelines: one where the plugin stays as
it is, maybe with a few fixes, and one where it's growing and gaining new
features. Maybe you want another timeline as well, where you try implementing
your features in a totally different way.

Not a problem!

You can create a new timeline easily using Git’s branch command. branch by
itself will list all the current branches in your project:

$ git branch
* master

There’s only one branch by default. It's named master, and you're in that
timeline. Now let’s split the universe into two and make an alternate reality!
It's simple (don’t type this in yet, we’ll get to that in a second):

$ git branch cow-plane

And now you've created a new timeline. But you're not in it yet; you're still
in master. (Type git branch and you’ll see the star is still next to master.) To switch
into the other timeline, type this:

$ git checkout cow-plane

Yes, it’s our good friend git checkout again. Powerful magic. It’s now transported
you to a different reality. Nothing you do here will affect the master timeline.
You can edit files, delete files, add new files, commit changes—everything.
And it’s all in the cow-plane universe. You can go back to master at any time:

$ git checkout master

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe * 178

Now you'll see the world as it was in master’s time, with none of your changes
from cow-plane. You fix problems and release this version of the plugin,
without any of the work-in-progress bits from your cow-plane timeline.

Try This Yourself

Let’s try that for real in CowShooter. We're going to make a new branch, called
play, make some changes in both the master and play branches, and merge
changes from play back into master. Picture it like this:

play

master (merge from play

into master)

The master time stream is going along, minding its own business. We'll create
a new branch to play on, and call it play:

$ cd ~/Desktop/code/CowShooter
$ git branch play

Then switch to that branch using git checkout:

$ git checkout play
Switched to branch 'play'

When in doubt as to where you are, just type git branch with no arguments,
and it will tell you what branches exist and mark the one you're on with an
asterisk (¥):
$ git branch

master
* play
So there are now two branches, and we're on play. Right now the content of
the two branches is identical. Let’s fix that.

Edit CowShooterjava. Near the bottom of the if statement (that checks to see if
the player is holding leather), there’s a call to our helper function, fling:
Canary.getServer().addSynchronousTask(new CowTask(victim));

fling(player, victim, 3);
victim.setFireTicks(600);

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Visit Multiple Realities ® 179

Let’s make our own version. Create a new function in this plugin and name
it myFling. Copy the version from EZPlugin into the body of the function, and it
will look like this:

public static void myFling(LivingBase player,
LivingBase entity, double factor) {
double pitch = (player.getPitch() + 90.0F) * Math.PI / 180.0D;
double rot = (player.getRotation() + 90.0F) * Math.PI / 180.0D;

double x = Math.sin(pitch) * Math.cos(rot);
double z = Math.sin(pitch) * Math.sin(rot);
double y = Math.cos(pitch);

entity.moveEntity(x * factor, y + 0.5, z * factor);

}
And change the 0.5 on the last line to some other number, say 1.5.

Then change the call to myFling instead of fling:

Canary.getServer().addSynchronousTask(new CowTask(victim));

myFling(player, victim, 3);
victim.setFireTicks(600);

Run build.sh to make sure it still works, and commit your changes:

$ git commit -a -m 'Moved vector calculation'
[play 411208c] Moved vector calculation
1 file changed, 9 insertions(+), 1 deletion(-)

Now with that safely in a snapshot in the play branch, let’s go back and take
a look at the original:

$ git checkout master
Switched to branch 'master'

And now the version of CowShooterjava on disk is the version in the master reality.
Take a look at it and see. One note of caution: Git changed the text file on
disk. The version in your editor’s buffer might be the old one. Most editors
are savvy enough to realize when a file has changed out from under them,
but how that’s handled is up to the editor.

Now back here in master, let’'s change the cow shooter to shoot creepers instead.

In both CowShooter.java and CowTask.java, add the import for Creeper at the bottom
of the list of imports:

import net.canarymod.api.entity.living.monster.Creeper; // Add this line

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe * 180

In CowShooter.java, change the spawn line to make a Creeper instead of a Cow:
Creeper victim = (Creeper)spawnEntityLiving(loc, EntityType.CREEPER);
Great! Then over in CowTask.java, change our variable at the top:

private Cow cow; // Delete this line
private Creeper creeper; // Add this line

And again change all the references from cow to creeper to match (there are a
lot).

Once it builds successfully, commit it for safekeeping:

$ git commit -a -m 'Changed to shoot creepers'
[master ea6l8af] Changed to shoot creepers
2 files changed, 13 insertions(+), 13 deletions(-)

While we're working in master, it would be nice to bring the “fling” changes
over from the play branch. For that, you can use a git merge:

$ git merge play -m 'Bringing over vector calc'

Auto-merging src/cowshooter/CowShooter.java

Merge made by the 'recursive' strategy.

src/cowshooter/CowShooter.java | 8 ++++++++
1 file changed, 8 insertions(+)

Now take a look at the CowShooterjava file, and you’ll see the changes from the
play branch have been incorporated. master now contains the move to the fling
function and the changes from Cow to Creeper.

Having merged in changes from the play branch doesn’t mean it’s gone away.
There’s still a play branch out there and you can still play with it as long as
you want. If you are really, truly done with it and never want to see that
branch again, you can delete it:

$ git branch -d play
Deleted branch play (was f3e6538).

And it is unceremoniously deleted from reality, as git branch shows:

$ git branch
* master

Back Up to the Cloud

This is a fairly advanced topic. Feel free to skip it on your first reading. But do
read it at some point—after all, hard disks fail, laptops break, and thumb drives
get lost.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Back Up to the Cloud ¢ 181

Git keeps a local copy of all of your files and all of your changes in its local
repository, and you can set it up to keep a copy of your repository in the cloud
as well. You choose when to send changes to the cloud by running the com-
mand git push. After a push, the remote repository in the cloud will have all
the same content and changes you have locally.

To set that up, you'll need an account on a Git host.

The most popular one is GitHub, although many people like Bitbucket as
well.! > GitHub is the standard for code that you intend to share with others
or make available as open source, while Bitbucket is better suited to private
projects that you don’t intend to share with the world.

Both offer really simple web interfaces to get you set up and running. For
instance, once you create an account on GitHub, you can click the button to
create a new repository, and you’ll get a screen similar to the following:

o [] Search or type a command Explore Gist Blog Help
Owner Repository name

e andyhunt ~ /

| Great repository names are short and memorable. Need inspiration? How about yolo-wallhack.

| Description (optional)

®

Public
Anyone can see this repository. You choose who can commit.

O Private
You choose who can see and commit to this repository.
[Initialize this repository with a README

This will allow you to git clone the repository immediately.

Add .gitignore: None ~ Add a license: None ~

Pick a name for your project, and select Public or Private. Public repositories
on GitHub are available for free, but private repositories cost money. Bitbucket,
on the other hand, offers unlimited private repositories for free. Don’t initialize

1. http://github.com

http://github.com
http://bitbucket.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe * 182

the repository, as you already have one locally. Just click the Create Reposi-
tory button, and bang—it’s done.

Now you’ll see instructions on what to do next.

Quick setup — if you've done this kind of thing before

HTTP SSH https://github.com/andyhunt/minecraft.git B

We recommend every repository include a README, LICENSE, and .gitignore.

Create a new repository on the command line

touch README.md

git init

git add README.md

git commit -m “first commit®

git remote add origin https://github.com/andyhunt/minecraft.git
git push -u origin master

Push an existing repository from the command line

git remote add origin https://github.com/andyhunt/minecraft.git
git push -u origin master

First, copy and save the URL to your repository at the top. In this example,
that would be https://github.com/andyhunt/minecraft.git.

Since you already have a local repository, follow the instructions at the bottom
for “Push an existing repository from the command line.” Mine looks like this:

$ git remote add origin https://github.com/andyhunt/minecraft.git
$ git push -u origin master

The first command sets up a remote named origin and associates it with the
given URL. Next, the push with the -u option sets the master branch to be
tracked to origin. Now whenever you reach a good stopping point, you can run
git push and all your code and changes will be safely saved in the cloud.

You (or anyone else if it’s a public repository) can get a copy of all the code
and the history of the changes by using git clone to clone a copy of the reposi-
tory into an empty directory:

$ mkdir newcopy

$ cd newcopy
$ git clone https://github.com/andyhunt/minecraft.git .

report erratum -

discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Share Code * 183

Friendly Code

When you're writing code to share with others—which means sharing with the whole
world—you need to make a little extra effort to write “friendly” code:

¢ Neatness counts. Put braces where they belong; don’t try and jam everything on
one line or use inconsistent indentations. The format of the code can be as
important as the code itself for human readers.

¢ Keep it tight. Don’t make lines or functions hugely long.

e Comment your functions. Explain why a function is there, and what it’s used
for. Don’t comment on how it does it—that’s what the code is for.

¢ Honor naming conventions. Java prefers camel-case identifiers (like in the word
camelCase), with embedded capital letters. Other languages may use names with
underscores or other conventions. Name variables so that readers can easily
understand what they are used for. Although single-letter variables (like i) are
often used for loop counters, that’s not very descriptive. But it’s even worse to
use i (which is normally an index) as a string or a Location! Stick to the conventions.

Share Code

Distributing code via GitHub is a very popular way of sharing your code with
the world. All you need to do is give out your GitHub project URL (in this
example, https://github.com/andyhunt/minecraft.git). Now anyone in the
world can use git clone to get a copy of your code, and they can make their own
changes, compile it, install it, and so on.

One of the advantages of releasing your source code to the world is that other
programmers can help add features and fix bugs.

Both GitHub and Bitbucket have nice web interfaces to help with that.

Suppose one of your fans has code for a new feature she’d like you to include
in your plugin. She’'d fork (make a copy of) your repository and make the
proposed changes in a named branch in her repository. Then through the
magic of GitHub (or Bitbucket), she’d submit the changes in that branch to
you as a pull request. That is, she’s sending you a request to pull her branch
into your repository and use it.

In the web interface, you can reply to pull requests with questions and com-
ments, and have a whole discussion about the changes. If and when you want
to incorporate them, just click the Merge Pull Request button. If the new code
can merge in without any conflicts, you're done. Otherwise, click the Command
Line button, and you’ll get further instructions.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 12. Keep Your Code Safe © 184

We've only scratched the very surface of Git: it’s a really powerful and some-
times quite complicated tool. Whole books are devoted just to Git (including
Pragmatic Version Control Using Git [SwiO8] and Pragmatic Guide to Git [SwilO]).

But hopefully this is enough to get you started.

Next Up

Git is a powerful tool, not just because it gives you a project-wide “undo
button,” but because it allows you to experiment with confidence. You don’t
have to be afraid that you’ll screw everything up. When you do screw every-
thing up, Git lets you “unscrew” it back to the point where it all worked. With
branches, you can even try a couple of different approaches in code. Not sure
if you should use an array or a hash? Not sure if the listener should be in a
separate class? You can use branches to try things out.

With that freedom in hand, you're ready for the final step.

git config --global user.email email Set your email address

git config --global user.name "Name" Set your user name

git init Initialize a Git repo in the current
directory

git add files Add files (or directories) to be tracked
by Git

git commit -a -m 'Commit message' Commit changes (-a all)

git log --oneline files Show commit messages for one or
more files

git status Show what files you've changed, files

you've created but Git doesn’t know
about (untracked), and so on

git diff files Show differences between versions

git checkout files Discard local changes for files (use
with caution)

git checkout name Switch to named branch

git branch List all branches

git branch name Switch to named branch

git remote add origin url Add a remote repo as “origin”

git push -u origin master Copy changes on the master branch

to the remote named “origin”

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Next Up ¢ 185

Next, and finally, we’ll look at how you can go about designing and building
your own plugin from scratch.

Your Growing Toolbox

92%

You now know how to:

Use the command-line shell
Build with Java, javac

Run a Minecraft server

Deploy a plugin

Connect to a local server

Use Java variables for numbers and
strings

Use Java functions

Use if, for, and while statements
Use Java objects

Use imports for Java packages
Use new to create objects

Add a new command to a plugin
Work with Location objects

Find blocks/entities

Use local variables

Use class-level global variables
Use ArrayLists

Use HashMaps

Use private and public to control visibility
Modify Minecraft blocks

Modify and spawn entities

Listen for and react to game events
Manage plugin permissions

Create a separate class

Schedule a task to run later

Schedule a task to run periodically

Save and load configuration data

Build up complex code from simple func-
tions

Save and load plugin game data

Use DataAccess to use the database

Catch and throw Java exceptions

Use Git to keep track of changes to code
Go back to earlier versions of code (an
“undo button”)

Maintain multiple versions of code at the
same time

Back up your code to the cloud

report erratum - discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

In this chapter you're going to design your own plugin. You'll add the
last necessary bits to your toolbox. You'll learn the following:

+ How to assign responsibilities to classes

» How to translate responsibilities into functions

» How to do a little design, a little coding, and a little testing, all as
you go

You'll be able to start working on your very own plugins.

CHAPTER 13

Design Your Own Plugin

For all the plugins we've looked at so far, I've led the way and shown you what
to do. In this chapter I'll give you some suggestions and hints to help you
develop your own plugins from scratch. Together we’ll go through the steps
for a brand-new plugin and see how it works.

We're going to (more or less) follow these steps:

Have an idea: I want a plugin to do
Gather your materials.

Lay them out.

Try each part.

Knit it all together.

Profit!

o Ok W

IMPORTANT NOTE: Even though I've laid out these steps in order, and we’ll
go through them in order, the real world doesn’t usually work that way.

Creativity and invention rarely take a direct, linear path from idea to execution.
Instead, you’'ll discover that something doesn’t work the way you thought it
did. The code you wrote is all wrong. Or the code is perfectly right but not
what you need. That’s all totally normal, and really it’s what writing code is
all about.

You may need to throw out anything you've done and do it over, up to and
including the entire project. Hey, even the government does that with $100
billion projects, so we can do it too.

Professional programmers tackle this problem by taking very small steps: do
one small, bite-size thing at a time, make sure that works, then go on to the
next. Any time you realize that you've made a mistake or misunderstood
something, go back and fix it right then and there. Don’t think you’ll
remember to fix it later; you won’t. Trust me on that one.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ¢ 188

Let’s dig in and design a new plugin. I'm going to go through these steps on
my new plugin, and you’ll do the same thing for your new plugin alongside
of me. Yours should do something different. And it’s okay if this takes a while;
this isn’t the sort of chapter you’ll whip through in one evening.

Have an Idea

Before you start, you need some idea of what you want to write. It may not
be a great idea or a perfect idea yet, and that’s okay. This is software, after
all, and you're allowed to change your mind. But we need to start somewhere.

So I think I'd like to figure out how to randomly generate “creeper cows”—that
is, cows that jump around and try to attack you, and that explode when they
jump on you. That might be fun.

At this point, I have no idea how to even start such a thing.

Try This Yourself

What is your idea? Jot it down now. If you're stuck, take a look at plugins
other people have written, or just browse the Canary documentation and see
if something inspires you.

Gather Your Materials

Armed with an idea, you now “gather your materials.” If you were building a
craft project, you'd gather all the raw materials (glue, wood, paper, googly
eyes, plutonium) and tools (scissors, hammer, arc welder, cooling tower—what-
ever). We need to do the same. But what materials do we need?

Well, we need a first guess at what sort of data we’ll require in the plugin,
how to keep track of it, and what makes the plugin run—is it run from a
command, or an event, or a timer? Here are some good questions to ask:

e What do you need to keep track of?

¢ How long do you need to keep it? (during a command, while the server is
running, across server reboots on disk...)

e What are the triggers? (user-entered command, in-game event, internal
state, timer, combination...)

e What parts of the game do you need to affect (blocks, players, potions,
inventory, and so on) and what Canary or Java functions will you need
to use for them?

e What can go wrong?

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Gather Your Materials ® 189

You may not have all the answers yet. But that won'’t stop us; let’s get started
(using my “creeper cow” idea).

What do you need to keep track of? We probably need to keep track of the
cows we spawn. We might need to keep track of players that each cow is tar-
geting and trying to attack, or maybe we’ll figure that out for each cow as we
go along. We don’t know which yet. Anything else? Oh, we want to randomly
create locations for the cows; do you remember what function to use to get
random numbers in Java?

How long do you need to keep it? Since these are randomly generated attack
cows, I don’t think we need to keep track of them when the server shuts
down—we’ll just make new ones. We will need to keep track of them in
memory while the server is running, though, so at a minimum we’ll need
some kind of a static list or hash of the cows we’'ve spawned. Reread Chapter

What are the triggers? It would be kind of stupid to have to type in a command
to get attacked by creeper cows, so we won’t be using a @Command function.
Instead, we’ll need an event to kick off cow generation, and maybe a timer to
keep the cow attacking and make it eventually explode. We'll have to find
some kind of suitable event to listen for. Have a look back at Chapter 9,

What parts of the game do you need to affect? We'll need to move the killer
cows around and blow them up, which we know how to do from the earlier
plugins. We'll need to blow up the player that we're attacking. Can we just
blow up when the cow is next to a player, or do we need to explicitly kill the
player (by setting health to zero or setting the player on fire or something)?
We'll need to experiment and see how that works.

What can go wrong? This is a question to ask yourself constantly when creating
a plugin. For now it seems likely our cows could get confused when attacking
and get stuck somewhere, or not have any player nearby to attack. So we’ll
need to deal with that. Also, it’s probably a good idea to limit the number of
cows were going to spawn, so we don’t accidentally create the Great Cow
Deluge.

It’s not much, but it’s a start. Here’s what we've gathered so far:
¢ A static list or hash of cows we've spawned

e The Java function to make a random number (what was that again?)

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ¢ 190

¢ An event to spawn cows

¢ The idea that each cow needs a timer so it has a chance to find players
and attack them

e The idea that the cow needs to not get stuck in the terrain (what if there’s
no player nearby?)

e The knowledge that we may need to put a limit on the number of cows to
spawn

Try This Yourself

Now go through these questions for the plugin you want to build, and come
up with your own list of things you’ll need—your “materials.”

Include things you aren’t sure about—there’s no penalty if you end up not
using them.

Lay Them Out

Before we create the plugin and start writing code, let’s think about what
might go where. In other words, will this fit all in one function or even one
class, and if there are several functions or classes, what goes where? If there
are additional classes, what do they need to know about us or each other? If
you've forgotten some details of functions and objects, check back with
Chapter 4, Plugins Have Variables, Functions, and Keywords, on page 43, and

So here are our questions:

e What goes where? What functions and classes do you need?
e Why do you need this function (or class)? What is it responsible for?
* Who else needs to know about this function or class (if anyone)?

One way of attacking this, especially on complicated plugins, is by using good
old-fashioned index cards. (These are called CRC cards, where CRC is short
for “class-responsibility-collaborators,” invented by our friends Ward Cunning-
ham and Kent Beck.) Divide each card into three parts: a title up top, a list
of things it is responsible for on the left, and other classes it needs to work
with on the right.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Lay Them Out ® 191

So our main plugin class, so far, would look like this:

CI"’C 6P€’—C0w

Mantaiy Visk of cows Cow
Cw‘a(‘ﬂ nev Cows dv\)]ef' Vumnf'kJ CﬂVl CU’) C‘VC'/\‘FS
Remowt Jead cows Cv—cCPer(bu) Timer

Then there’s the CreeperCowTimer, which will hold a cow and take care of the
things an attacking cow needs to do:

{ reeper Cow Limer—

At ack P/"f”} Cr€€p€fCou/
Server TasK

Notice we haven’t gotten into any detail of particular functions yet: you want
to get a firm idea in your head of why a particular class needs to exist. What
is it responsible for doing?

For each responsibility, take a stab at working out what it needs to do. So as
not to get too hung up on Java syntax and issues (or those of any other pro-
gramming language, for that matter), say what you want to do in plain English.
Tell the story of what you want to do—don’t worry about how yet.

Each step will become a function, or multiple functions if you decide to split
the step into a couple of simpler functions and/or classes.

Create our list of cows.
Spawn creeper cows and add them to our list.
Set up each creeper cow with a timer.

e

Listen for events to create and remove cows.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ® 192

That part was easy. But what’s a creeper cow to do? We said its responsibility
is to “attack players.” What does that mean? How about this:

1. Find the closest player. (There might not be one.)
2. Jump toward the closest player. (Don’t die from the impact!)
3. Ifyou hit the closest player, explode.

So for the CreeperCow plugin, let’s take our list of gathered materials plus the
list of steps, make up some function names, and see what we need to code:

CreeperCow (the main plugin class):
e cowlist: A static list of cows we've created.

e Math.random(): We need a random number, and the Java docs say this will
return a double between 0 and 1.'

e spawnCows(): Create some random number of cows, no more than some
established limit. We’'ll create a CreeperCowTimer to hold each cow and set
its timer going.

e eventListener(): A listener to call spawnCows().
CreeperCowTimer (one per cow):

e findClosestPlayer(): There might not be one.

e jump(Location loc): Jump means fly up into the air and don’t die on impact.

* explode(): If we hit a player (or are close enough), explode and tell the plugin
to remove this cow.

There’s a lot we haven't figured out yet, but this gives us enough to start
putting some code together. And that will help us figure out the remaining
questions. And probably raise some new ones. Onward we go.

Try This Yourself

Get a couple of index cards or some bits of paper, and jot down your main
class and its responsibilities, and any parts of Canary it might need. If you
need extra classes as we did here (like for a task runner), or anything else
you need to keep track of, create those cards as well.

For each responsibility, write a list of steps that reads like a story. Then go
through your list of “materials” and take a first stab at making a list of func-
tions and variables, asking the same questions we asked here.

1. http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#random%28%29

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#random%28%29
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Try Each Part ® 193

Once you have your list together, it's time to start writing some code—but
not all at once, as we’ll see in the next section.

Try Each Part

We're going to start coding now, but as exciting as that is, we want to go
slowly. Whether you're following along with me here or working on your own
plugin, remember to take one small step at a time—don'’t rush it.

Let’s begin by creating a new directory and the usual files that every plugin
needs. Once again we’ll use the mkplugin.sh script to get started. Don't forget,
you’'ll be making your own plugin under desktop; my version is under Desk-
top/code.

~/Desktop$./mkplugin.sh CreeperCow

~/Desktop$ cd CreeperCow

~/Desktop/CreeperCow$ 1ls -a
.gitignore Manifest.txt build.sh src
Canary.inf bin dist

And we’ll start right away by using Git to track our work (check back with
Chapter 12, Keep Your Code Safe, on page 169, for a refresher if you need to).

The mkplugin.sh script thoughtfully made us a .gitignore that will ignore the bin/
and dist/ directories. So we’ll add our first couple of files and commit them as
a baseline:

~/Desktop/CreeperCow$ git init

Initialized empty Git repository in /Users/andy/Desktop/CreeperCow/.git/
~/Desktop/CreeperCow$ git add .gitignore build.sh Canary.inf Manifest.txt src
~/Desktop/CreeperCow$ git commit -a -m First

[master (root-commit) 2e483f1] First

5 files changed, 95 insertions(+)

create mode 100644 .gitignore

create mode 100755 build.sh

create mode 100644 Canary.inf

create mode 100644 Manifest.txt

create mode 100644 src/creepercow/CreeperCow.java

(If you are hooked up to a remote repository, you can do a git push now as well.)
Now on to the code.

We know that we need to create a static cowlist and a spawnCows() method, and
we’ll need to listen for some events, so let’s start with that in CreeperCow.java.
Here’s the interesting part (omitting other imports and the usual other stuff):

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ® 194

import net.canarymod.plugin.PluginListener;

import net.canarymod.api.entity.living.animal.Cow;
import java.util.ArraylList;

import com.pragprog.ahmine.ez.EZPlugin;

public class CreeperCow extends EZPlugin implements PluginListener {
private static ArrayList<Cow> cowlList = new ArrayList<Cow>();
public void spawnCows() {

}

We made the main plugin a PluginListener and added a cowlist variable and the
start of the spawnCows() function. Before we go any further, let’s test just that
much—see if it builds without errors, and run the (empty) spawnCows function.

Small steps, remember. We don’t have an event listener yet (in fact, we don’t
even know what event we're going to listen for), so we’ll use a trick.

We're going to add a command to @Command that’s just for us—it’s not for
users. But we can use it to test what we're doing as we go along.

So let’s wire that up first, even before we've added any code to spawnCows:

@Command (aliases = { "testspawncows" },

description = "Test cow spawning",
permissions = { "" },
toolTip = "/testspawncows")

public void testSpawnCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
Location loc = me.getlLocation();
spawnCows () ;
}
}

(We'll need to import net.canarymod.api.world.position.Location; too.)

Now we have the ability to log in to the game and run the /testSpawnCows com-
mand to watch our cows spawn and make sure that works.

We don’t actually spawn any cows yet, but let’s just try it now and make sure
everything compiles, using build.sh, before we add any more code.

~/Desktop/CreeperCow$ build.sh

Compiling with javac...

Creating jar file...

Deploying jar to /Users/andy/Desktop/server/plugins...
Completed Successfully.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Try Each Part ® 195

That’s a good opportunity to make sure we've got the right imports and
everything, and haven’t made any typos. And since it’s working, I'll do a git
commit.

Try This Yourself

Now do this much yourself: create a new plugin directory with mkplugin.sh, get
a Git repository set up for it, and add any functions and data that you think
you need. Refer back to earlier parts of the book if you need a refresher on
anything.

Add the testing commands to @Command, even if you have real commands that
you're going to add as well. Again, small steps. You want to make small
functions that run by themselves, and get them right before continuing. Don’t
try to flesh out the functions yet; just start with empty function bodies like
we did here.

Don’t forget to do a git commit to “save your game” as you go along.

Filling In the Details: the spawnCows() Function

Now that we have a way to test it, let’s move on to the guts of spawnCows() itself.
We noted earlier that we need to do the following:

Create our list of cows.

Spawn creeper cows and add them to our list.
Set up each creeper cow with a timer.

Listen for events to create and remove cows.

W

Let’s take this one at a time. We already made the simple static list of cows,
so let’s look at spawning.

We'll need to create some random cows. This raises a question: where should
we put them? All over the game? Near where you are? Right on top of your
friend’s head? All of these choices may have their appeal.

One of the best things you can do when programming is to delay making
decisions. In many cases, you don’t know the “right” answer, and you may
not know it for a while—or ever. But that’s what function parameters are for:
we don’t have to decide the details right now. Instead of implementing some
particular detail, pass that it in as a parameter. Now you don’t have to decide,
and the function can be used with all sorts of different details.

So we need to change the temporary declaration we had in place for spawnCows()
and pass in something to indicate where we want these cows. What should
that look like?

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin * 196

Let’s start with a Location, and then a number of blocks square. The location
will be one corner of a large square, and the square will then extend for some
number in the x and z directions. So we’ll change the function signature to
look like this:

public void spawnCows(Location start, int size) {

Then we can decide later what to pass in. For testing, we can pass in your
Player location and a number you pick. Let’s wire that up now.

Ah, one small hitch: a command function passes us the arguments to a user
command as an array of String objects. We don’t want a string to pass to
testSpawnCows(), though—we want an int. How do you do that conversion, again?

A Google search for "java convert string to int" reveals the magic incantation:

int foo = Integer.parseInt("1234");

Now we can finish up the command to call spawnCows from our test command:

@Command (aliases = { "testspawncows" },
description = "Test cow spawning",
permissions = { "" },
min = 2, // Number of arguments
toolTip = "/testspawncows <number to spawn>")

public void testSpawnCommand(MessageReceiver caller, String[] args) {

if (caller instanceof Player) {
Player me = (Player)caller;
Location loc = me.getlLocation();
spawnCows (loc, Integer.parselnt(args[1]));
}
}

Okay, now it’s safe to add the code to implement spawnCows, because we have
a way to check it. Professionals work like this: write some way of checking
your code before you write the code itself. We can’t quite do it all automatically
—we still have to manually log in to the game and visually confirm that we're
spawning creeper cows, but it’s a similar idea.

So we need to start making some cows! We’'ll use a for loop, the starting loca-
tion, and the size to create a new location to spawn each new cow. How many
cows to spawn? Oops. We didn’t think about that. Better add that to the
function signature:

public void spawnCows(Location start, int size, int number) {
and pass it in from the testSpawnCommand() for testing:

spawnCows (loc, Integer.parselnt(args[l]), Integer.parselnt(args[2]));

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Try Each Part ® 197

Now we know how to do the for loop to create cows, and add them to our list
of Cows. We can finally put the code in spawnCows:

public void spawnCows(Location target, int size, int count) {
World world = target.getWorld();
double x = target.getX();
double z = target.getZ();
for (int i=0; i< count; i++) {
Location loc = new Location(
X + (Math.random() * size)
0,
z + (Math.random() * size),
0,0
)i
loc.setY(world.getHighestBlockAt((int)loc.getX(), (int)loc.getZ()) + 2);
Cow cow = (Cow)spawnEntityLiving(loc, EntityType.COW);
}
}

world,

’

To recap: we're multiplying the random number (0..1) by the size of the square,
so that will give us a number between zero and the size of the square. We'll
use that for an x and z of the location on the square, then ask the server for
the highest block at that point and use that as the y. That’s the location where
we'll spawn the new cow.

Let’s compile and build it, and test it out.

I'll log in to the game and try the command /testspawncows 10 8, which will spawn
eight cows within a 10x10 block from my current location.

PPPPPPPPPP L2 LDD LD,

Hey, we made some cows! They aren’t very frightening, though. They're just
sitting there, as cows do. We need to get them to jump around and attack.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin * 198

I've written some code, tested it, and now I'll do a git commit to save this state
of the world before going on.

Try This Yourself

Your turn! Start fleshing out your functions just as I did here. Don'’t feel they
have to do everything yet—just enough to get started (for instance, our cows
here don’t jump yet).

For each function you make, include a test command so you can try it from
inside the game.

Make sure all your test commands work with as much as you have done so
far. And don't forget to save your progress with Git.

Filling In the Details: CreeperCowTimer

Earlier we decided to put the code for the jumping, attacking, exploding cow
into a new CreeperCowTimer class. Eventually we’ll crank this up from an event
in the main CreeperCow plugin.

But first off we need a function to make a cow jump and attack. We’ll build
and test that first.

Given a target and our cow’s location, we create a new Vector3D by taking the
difference in Location coordinates in the x and z directions: that gives us the
displacement between the cow and its target. But that’s too large a number
for a velocity, so we then multiply it by a convenient number (0.075) that I
found by experimenting. Finally we set that as the cow’s velocity, which will
make it jump along that Vector3D at that speed.

public class CreeperCowTimer {
private Cow cow;

public void jump(Location target) {

Location cowLoc = cow.getlLocation();

double multFactor = 0.075;

Vector3D v = new Vector3D(
(target.getX() - cowLoc.getX()) * multFactor,
0.8,
(target.getZ() - cowLoc.getZ()) * multFactor

)

cow.moveEntity(v.getX() + (Math.random() * -0.1),
v.getY(),
v.getZ() + (Math.random() * -0.1));

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Try Each Part ® 199

I'll do a gitadd on the new CreeperCowTimer.java file so my changes can be tracked.

Great. Now we need some way of setting that private cow object. We’ll hook
this up to the spawnCows function later, but right now we’ll just pass in a cow
that’s been spawned already. For that, we’ll use the constructor function:

CreeperCowTimer(Cow aCow) {
cow = aCow;

}

Next we need to add a jump command to the plugin for our testing. Now we’ll
go back into the spawnCows function and add the spawned cows to the ArrayList.
Then, in the jump command we can go through the list and get each of the
spawned cows to jump toward us.

So we’ll start with this:

Cow cow = (Cow)spawnEntityLiving(loc, EntityType.COW);
cowList.add(cow);

Then we’ll add a test command:

@Command(aliases = { "testjump" },
description = "Test cow jumping",
permissions = { "" },
min = 1, // Number of arguments
toolTip = "/testjump")

public void testJumpCommand(MessageReceiver caller, String[] args) {

if (caller instanceof Player) {
Player me = (Player)caller;
for (Cow c : cowlList) {
C.jump(me.getLocation());
}
}
}

Oops, that’s not going to work.

We shouldn’t have kept a list of cows. We really need to keep track of Creeper-
CowTimer objects, as that will get us the jump() function and the other guts that
we need to write, as well as the Cow itself.

And if we do that, we should probably change the list to be a HashMap instead
of an ArrayList so we can look up the CreeperCowTimer objects by their Cow, as
that’s what we’ll get from events and spawning and such. We’'ll need to redo
a few things now.

Make a list of things we need to change for this, and come on back once you
have it.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ® 200

Changes We Need

Here’s what I came up with:
1. Change the import java.util.ArrayList; to import java.util.HashMap;.

2. Change the cowlList from public static ArrayList<Cow> cowList = new ArrayList<Cow>();
to use a hash instead: public static HashMap<Cow, CreeperCowTimer> allCows = new
HashMap<Cow, CreeperCowTimer>();. Also, I renamed it to “allCows” so that the
type of list isn’t part of the name.

3. Change the cowList.add(cow); to allCows.put(cow, new CreeperCowTimer(cow)); since
you have to put in a hash.

4. Change the for loop to iterate through the HashMap so the new loop looks
like this:

for (Cow ¢ : allCows.keySet()) {
CreeperCowTimer superCow = allCows.get(c);
superCow. jump(me.getLocation());

}
Right about now this might feel frustrating.

That’s okay: it’s not important to get it right the first time. That rarely happens
and doesn’t gain you much. It is important to get it right the last time.

With these changes we can now test jumping. I'll fire up the server, connect
from the client, and test by spawning just a single cow first. Then I can use
the testjump command to see if it starts heading toward me:

/testspawncows 5 1

PUPPPPVVVP _ SRRR2[JDN,

e e

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Knit It All Together ¢ 201

Great! Now for a few jumps:

/testjump
/testjump
/testjump

BHIRARRDD,

Ah, right. The cow died. We ran into that same problem back in the CowShooter
plugin—we have to set the cow’s health to the max using something like this:

cow.setHealth(cow.getMaxHealth());

But where should we do it? And what else do we need to finish up this plugin?
The current version is working but has a problem. Do a git commit to save the
current state of the code at this point before we start making more major
changes.

Knit It All Together

We need to add a few things from our list of materials and take care of a
couple of problems.

First off, we need to fix the dying cows, so let’s add an event handler to listen
for DamageHook, and cancel the event if its cause is DamageType.FALL. Ah, if we
cancel the damage event, we don’t need to bump up the cow’s health.

When testing the spawn function and the jump, we used ourselves as the
target. We need to do a little better than that, so we’ll have to add a getClosest-
Player() function to find the closest player to any given cow.

And as we saw earlier, we need to pick an event to use to spawn these
creeper cows. There are probably a couple of ways to do that. You don’t want
to spawn cows all over the world; it would be great if there were an event that
gets sent when each new chunk of the world gets loaded into the server.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ¢ 202

A quick look through the Canary documentation for events under net.canary-
mod.hook.world reveals just what we need: a ChunkLoadedHook when a part of the
world is loaded, and a ChunkUnloadHook when it’s deleted. So each time a new
16x16 chunk of the world gets loaded, we’ll get an event. One minor nit: the
chunk tells us which chunk it is in a grid of chunks; you have to multiply by
16 to get a real-world coordinate.

Our to-do list now includes these items:

¢ Add an DamageHook event handler so the cow doesn’t die.

e Add getClosestPlayer so each cow can find a nearby target.

Add ChunkLoadedHook to spawn cows in a 16x16 area.

Add the ChunkUnloadHook to remove cows from that chunk.

e Set up a task timer so each cow can find a target, jump, and explode if
needed.

e Manage the allCows in all these functions (add to it on spawn, delete it on
death, or unload).

Phew! That’s a bit of work. But all of these activities are using functions and
skills we've used already, so I won’t bore you with a lengthy play-by-play.

Here is the code in its entirety for you to read over and crib from as you need.

CreeperCow/src/creepercow/CreeperCow.java
package creepercow;

import java.util.HashMap;

import java.util.ArraylList;

import java.util.Iterator;

import java.util.List;

import java.util.Collection;

import net.canarymod.plugin.Plugin;

import net.canarymod.logger.Logman;

import net.canarymod.Canary;

import net.canarymod.commandsys.*;

import net.canarymod.chat.MessageReceiver;

import net.canarymod.api.entity.Entity;

import net.canarymod.api.entity.living.humanoid.Player;
import net.canarymod.api.world.World;

import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.position.Vector3D;
import net.canarymod.hook.HookHandler;

import net.canarymod.api.inventory.ItemType;
import net.canarymod.api.world.blocks.Block;
import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.api.entity.EntityType;
import net.canarymod.api.entity.living.animal.Cow;
import net.canarymod.api.entity.EntityType;

http://media.pragprog.com/titles/ahmine2/code/CreeperCow/src/creepercow/CreeperCow.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Knit It All Together ® 203

import net.canarymod.plugin.PluginListener;
import net.canarymod.hook.world.ChunkLoadedHook;
import net.canarymod.hook.world.ChunkCreatedHook;
import net.canarymod.hook.world.ChunkUnloadHook;
import net.canarymod.hook.entity.DamageHook;
import net.canarymod.api.DamageType;

import net.canarymod.api.world.Chunk;

import com.pragprog.ahmine.ez.EZPlugin;

public class CreeperCow extends EZPlugin implements PluginListener {

private static HashMap<Cow, CreeperCowTimer> allCows =
new HashMap<Cow, CreeperCowTimer>();

private static boolean enabled = false;
private final static int CHUNK SIZE = 16;

@Ooverride

public boolean enable() {
Canary.hooks().registerListener(this, this);
return super.enable(); // Call parent class's version too.

}

public void spawnCows(Location target, int size, int count) {
World world = target.getWorld();
double x = target.getX();
double z = target.getZ();
for (int i=0; i< count; i++) {
Location loc = new Location(
X + (Math.random() * size)

world,

’

0,
z + (Math.random() * size),
0,0
)
loc.setY(world.getHighestBlockAt((int)loc.getX(), (int)loc.getZ()) + 2);
logger.info("[CreeperCow] spawned cow at " + printLoc(loc));
Cow cow = (Cow)spawnEntitylLiving(loc, EntityType.COW);
CreeperCowTimer task = new CreeperCowTimer(this, cow);
Canary.getServer().addSynchronousTask(task);
allCows.put(cow, task);
}
}

public void cowDied(Cow cow) {
logger.info("[CreeperCow] cow died.");
allCows.remove(cow);

}

@Command(aliases = { "creepercows" },

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ® 204

description = "Turn Creeper Cows on and off",

permissions = { "" },

min = 2, // Number of arguments

toolTip = "/creepercows on|off")

public void enabledCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {

Player me = (Player)caller;

if (args[l].equalsIgnoreCase("on") ||
args[1l].equalsIgnoreCase("yes") ||
args[1l].equalsIgnoreCase("true")) {
enabled = true;
me.chat("Creeper Cows are enabled");
// Start off with a few right here ;)
spawnCows (me.getLocation(), 25, 5);

} else {
enabled = false;
me.chat("Creeper Cows are disabled");

}
}
}
@Command(aliases = { "testspawncows" },
description = "Test cow spawning",
permissions = { "" },
min = 3, // Number of arguments
toolTip = "/testspawncows <size of square> <number to spawn>")

public void testSpawnCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
Location loc = me.getlLocation();
spawnCows (loc,
Integer.parselnt(args[1]),
Integer.parselnt(args[2]));

}
}
@Command(aliases = { "testjump" },
description = "Test cow jumping",
permissions = { "" },

min = 1, // Number of arguments
toolTip = "/testjump")
public void testJumpCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
for (Cow c : allCows.keySet()) {
CreeperCowTimer superCow = allCows.get(c);
superCow. jump(me.getLocation());
}
}
}

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Knit It All Together ® 205

@Command (aliases = { "testexplode" },
description = "Test cow explode",
permissions = { "" },
min =1, // Number of arguments
toolTip = "/testexplode")
public void testExplodeCommand(MessageReceiver caller, String[] args) {
if (caller instanceof Player) {
Player me = (Player)caller;
List<CreeperCowTimer> list = new ArrayList<CreeperCowTimer>();
for (Cow c : allCows.keySet()) {
CreeperCowTimer superCow = allCows.get(c);
list.add(superCow);
}
for (CreeperCowTimer superCow : list) {
superCow.explode();
}
}
}

@HookHandler
public void onChunkLoad(ChunkLoadedHook event) {
if (enabled) {
World world = event.getWorld();
Chunk chunk = event.getChunk();

if (Math.random() > 0.10) { // Only make a cow 1 in 10
return;
}
logger.info("[CreeperCow] Spawning");
// The X and Z from the chunk are indexes;
// we have to multiply by 16 to get an actual
// block location.
Location start = new Location(
chunk.getX() * CHUNK SIZE,
0,
chunk.getZ() * CHUNK SIZE);
spawnCows (start, 16, 1);
}
}

@HookHandler
public void onChunkUnload(ChunkUnloadHook event) {
Chunk chunk = event.getChunk();
List<Entity>[] all = chunk.getEntityLists();
for(int i = 0; i < all.length; i++) {
for (Entity ent : all[i]) { // List of 16 block subchunks
if (ent instanceof Cow) {
Cow cow = (Cow) ent;
if (allCows.containsKey(cow)) {

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ¢ 206

allCows.get(cow).removeMe();
allCows.remove(cow);

@HookHandler
public void onEntityDamage(DamageHook event) {
Entity ent = event.getDefender();
if (ent instanceof Cow) {

}
}

}

Cow cow = (Cow) ent;
if (event.getDamageSource().getDamagetype() == DamageType.FALL) {

if (allCows.containsKey(cow)) {

}

event.setCanceled();

CreeperCow/src/creepercow/CreeperCowTimer.java
package creepercow;

import
import
import
import
import
import
import
import
import
import
import
import

java.util.List;
java.util.ArraylList;

net.
net.
net.
net.
net.
net.
net.
net.
net.
com.

canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.

Canary;

api.entity.EntityType;
api.world.position.Location;
api.entity.living.humanoid.Player;
api.entity.living.animal.Cow;
api.world.position.Vector3D;
api.world.blocks.Block;

api.

world.blocks.BlockType;

tasks.ServerTask;
pragprog.ahmine.ez.EZPlugin;

public class CreeperCowTimer extends ServerTask {
private Cow cow;
private CreeperCow plugin;

CreeperCowTimer (CreeperCow parentPlugin, Cow aCow) {
super(Canary.getServer(), 0, true); // delay, isContinuous

cow

plugin

}

aCow;

= parentPlugin;

public Player getClosestPlayer(Location loc) { //return -1 on failure

http://media.pragprog.com/titles/ahmine2/code/CreeperCow/src/creepercow/CreeperCowTimer.java
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

List<Player> list = Canary.getServer().getPlayerList();
Player closestPlayer = null;
double minDistance = -1;
for(int i = 0; i < list.size(); i++) {
Player p = list.get(i);
Location ploc = p.getlLocation();
if (Math.abs(ploc.getY() - loc.getY()) < 15) {
double dist = distance(loc, ploc);
if (dist < minDistance || minDistance == -1) {
minDistance = dist;
closestPlayer = p;
}
}
}
return closestPlayer;
}
//
// Find the distance on the ground (ignores height)
// between two Locations
//
public double distance(Location locl, Location loc2) {
return Math.sqrt(
Math.pow(locl.getX() - loc2.getX(), 2) +
Math.pow(locl.getZ() - loc2.getZ(), 2)
);
}

// Explode yourself
public void explode() {
plugin.cowDied(cow); // notify parent
Location cowLoc = cow.getlLocation();
cow.getWorld().makeExplosion(cow,
cowLoc.getX(), cowlLoc.getY(), cowLoc.getZ(),
3.0f, true);
removeMe() ;

}

// We are all done, either from chunk unload or explosion
public void removeMe() {
cow.kill();
Canary.getServer().removeSynchronousTask(this);

}

// Jump this cow toward the target
public void jump(Location target) {
Location cowLoc = cow.getlLocation();
double multFactor = 0.075;
Vector3D v = new Vector3D(
(target.getX() - cowLoc.getX()) * multFactor,
0.8,

Knit It All Together ¢ 207

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin * 208

(target.getZ() - cowLoc.getZ()) * multFactor
)
cow.moveEntity(v.getX() + (Math.random() * -0.1),
v.getY(),
v.getZ() + (Math.random() * -0.1));
}

// Callback to run and execute body of task
public void run() {
if (cow.isOnGround()) { // otherwise it's still jumping
Location cowlLoc = cow.getlLocation();
Player p = cow.getWorld().getClosestPlayer(cow, 10000);
if (p == null) {
return;

b
Location pLoc = p.getLocation();
double dist = distance(cowlLoc, plLoc);

if (dist <= 4) {
explode();
} else if (dist <= 200) {
jump(plLoc);
}
}
}

}

You might notice that I didn’t actually implement everything I mentioned in
my lists. For example, there’s no check for spawning too many cows, and I
don’t kill the target player directly. I may end up adding those, or just let it
be. Just because I thought I needed those elements doesn’t mean I have to
write them yet. I can always add them later if needed.

And I might run into other problems that [hadn’t thought about. For instance,
what happens to these cows when the server shuts down? The cows will still
be in the world, but they won'’t be CreeperCows anymore, as the plugin doesn’t
keep track of them. Maybe I should despawn the cows on shutdown. Or maybe
having extra cows isn’t really a problem? Ah, software.

Try This Yourself

That was our journey with the CreeperCow plugin. Your journey with your plugin
will probably be a little different. But try to follow these same general steps:
figure out what parts you need, possibly using index cards, then write out a
sequence in English of what should happen. Take all that and create your
functions, pass around the data you need to, store the stuff you need to

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Just the Beginning ® 209

remember, and always add test commands so you can test each part
separately.

Remember to remove the test commands before shipping your plugin to your
friends. Or, for a bit of extra flash, set it up so that you need a special
“Developer” permission to run the tests, and give yourself that permission.

And that’s it! Your toolbox is now complete:
Your Full Toolbox!

100%

You now know how to:

¢ Use the command-line shell
¢ Build with Java, javac

¢ Run a Minecraft server

e Deploy a plugin

¢ Connect to a local server

Modify Minecraft blocks

Modify and spawn entities

Listen for and react to game events
Manage plugin permissions

Create a separate class

Schedule a task to run later

Schedule a task to run periodically

¢ Use Java functions Save and load configuration data

e Use if, for, and while statements Build up complex code from simple
¢ Use Java objects functions

¢ Use imports for Java packages Save and load plugin game data

e Use new to create objects Use DataAccess to use the database

e Add a new command to a plugin Catch and throw Java exceptions

e Work with Location objects Use Git to keep track of changes to code
¢ Find blocks/entities Go back to earlier versions of code (an
e Use local variables “undo button”)

¢ Use class-level global variables Maintain multiple versions of code at the
Use ArrayLists same time

Use HashMaps Back up your code to the cloud

Use private and public to control visibility Use CRC cards to think about classes and
responsibilities

Decompose responsibilities into functions
Test as you go

e Use Java variables for numbers and
strings

Just the Beginning

It's been a fun trip, but we've barely scratched the surface. There is more
Java you need to learn, and there’s a lot more to Canary than we’'ve covered
here. Plus, there’s a ton more to programming in general that you'll discover
as you go along.

report erratum

- discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Chapter 13. Design Your Own Plugin ® 210

But I hope this has been a fun start for you. Don’t stop now! Get a couple
more books on Java or another language, on programming, on web design—
whatever. Never stop reading and learning,.

And when you make something really cool, email me and let me know.

Thanks for buying this book, and all the best,

h/

andy@pragprog.com

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 1

How to Read Error Messages

Error messages from the Java compiler, the runtime system, and the Minecraft
server try to be self-explanatory, but they don’t always succeed. The javac
compiler in particular can get more than a little confused and spit out
unhelpful messages.

Please read through this whole appendix even if you aren’t getting a particular
error at the moment, as some of this information might help you decipher
other error messages that aren’t included here.

I've included some of the common error messages you might run into, along
with some observations and commentary. If you run into an error that you
just can’t figure out, and it isn’t listed here, try Googling for the text of the
error message. Odds are that someone else has had the same problem at
some point, and you can benefit from their experience.

Java-Compiler Error Messages

Java-compiler error messages usually look something like this:

src/helloworld/HelloWorld.java:21: cannot find symbol
symbol : class MessageReceiver
location: class helloworld.HelloWorld
public void helloCommand(MessageReceiver caller, String[] parameters)

Java is trying to tell you exactly where the error occurred and what it thinks
the problem is.

The first bit of text is the name of the file where Java thinks the problem is
located—in this case, the file src/helloworld/HelloWorld.java. Next is a number in
between colons—that’s the line number in the file (21 here). Next is the error
message itself, “cannot find symbol.” After that come the details specific to

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 1. How to Read Error Messages ® 212

this error message, which in this example is the symbol that it can’t find, and
some more information about the location of the missing symbol.

So on line 21 of HelloWorld.java, Java doesn’t know about the thing named
MessageReceiver. Let’s look at some possible causes.
javac: Cannot Find Symbol

“Cannot find symbol” means that the compiler has come across a word, a
piece of text, that it doesn’t understand.

This error can be caused by several problems. First, what happens if I just
stick in an assignment statement like i = 10 without ever declaring what i is?

src/helloworld/HelloWorld.java:23: cannot find symbol

symbol : variable i
location: class helloworld.HelloWorld
i=10;

The compiler has no idea what i is or what it should be, so it complains.

To fix it I can add a declaration like int i; above this code or on the same line
as inti = 10;. Now the compiler knows that i is a local variable.

But what if I have declared the variable and I still get an error? For instance,
in the call to helloCommand, I'm declaring a parameter MessageReceiver caller. caller
is my variable, of type MessageReceiver, but I get the same error:

src/helloworld/HelloWorld.java:21: cannot find symbol
symbol : class MessageReceiver
location: class helloworld.HelloWorld
public void helloCommand(MessageReceiver caller, String[] parameters)

This can indicate a missing or misspelled import statement. The compiler
knows that caller is a variable of type MessageReceiver, but it doesn’t know what
a MessageReceiver is.

In this case, adding
import net.canarymod.chat.MessageReceiver;

at the top of the file fixes the error. See Appendix 7, Common Imports, on page

Java or Canary doc.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Java-Compiler Error Messages ® 213

javac: Missing Semicolon

src/helloworld/HelloWorld.java:6: ';' expected
import net.canarymod.chat.MessageReceiver

We forgot the semicolon at the end of the import line. It should be this:

import net.canarymod.chat.MessageReceiver;

However, this error message isn’'t always foolproof. For instance, if I leave off
the opening brace, {, of a code block by mistake, like this:

public void disable()
log.info("Stopping.");
}

I'll get a slew of errors, starting with “missing semicolon” and continuing on
to the next several lines of code, past our initial error:

src/helloworld/HelloWorld. java:18: ';' expected
public void disable()

A~

src/helloworld/HelloWorld. java:21l: class, interface, or enum expected
public void helloCommand(MessageReceiver caller, String[] parameters)

A

The compiler is confused: it thinks maybe we should have had a semicolon
after onDisable(), but actually we needed an opening brace, {. Then it has no
idea what’s supposed to be happening, and it starts complaining that the
entire rest of the file is not what it expected.

That’s why in most cases you only want to read the first one or two errors
and ignore the rest for the moment, as many of the following errors will dis-
appear once you fix the first one.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 1. How to Read Error Messages ® 214

javac: lllegal Start of Expression

This is a generic error message if we didn’t tidy up an expression as we should
have and the compiler isn’t ready to start a new expression yet—for instance,
if I leave off the closing brace at the end of a function:

public void disable() {
log.info("Stopping.");

Again I'll get a bunch of errors, starting at the point of the missing brace and
continuing way past it into the rest of the file:

src/helloworld/HelloWorld. java:21: illegal start of expression
public void helloCommand(MessageReceiver caller, String[] parameters)

A

src/helloworld/HelloWorld. java:21: ';' expected
public void helloCommand(MessageReceiver caller, String[] parameters)

A

src/helloworld/HelloWorld. java:21: ';' expected
public void helloCommand(MessageReceiver caller, String[] parameters)

A

src/helloworld/HelloWorld.java:21: not a statement

Just remember that “illegal start” really means “didn’t finish properly.”

javac: Class Is Public, Should Be Declared in a File Named...

In my HelloWorld.java, I get creative and start to add another class declaration
at the end of the file:

public class TooMany {
/] ..
}

This generates a very descriptive error message:

src/helloworld/HelloWorld.java:32: class TooMany is public,
should be declared in a file named TooMany.java
public class TooMany {

Remember that every public class must be in a separate file that is named
for the class, in a directory named for the package.

However, you can declare a private class inside your public class within the
same file. This can sometimes be helpful for small helper classes.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Java-Compiler Error Messages ® 215

javac: Incompatible Types

In the BackCmd plugin version where we're saving player locations to disk, I
made a typo: playerTeleports returns a Stack of Location objects. But I accidentally
tried to assign it to a stack of Player objects, like this:

Stack<Player> locs = playerTeleports.get(player.getName());

That results in the fairly straightforward error message “incompatible types”:

src/backcmdsave/BackCmdSave. java:98: incompatible types

found : java.util.Stack<net.canarymod.api.world.position.Location>

required: java.util.Stack<net.canarymod.api.entity.living.humanoid.Player>
Stack<Player> locs = playerTeleports.get(player.getName());

Java says it found a Location where it was expecting me to use a Player. Of course
that’s backwards—that’s not what I meant at all.

At times like this it really helps to think like the computer does (in this case,
to think like the compiler does). So imagine you're the Java compiler. You
just completed reading a line of code through to the semicolon, and you're
starting the next line. You see this first part:

Stack<Player> locs =

Ah! The programmer is declaring a variable named locs, and it’s a generic Stack
of Player objects. And we're about to assign an initial value to it.

Then the compiler sees the next part of the statement:
playerTeleports.get(player.getName());

You (the compiler) look up playerTeleports.get() and see that it returns a Stack of
Location objects. Well, that won’t do at all. Here the programmer says we've got
a Stack of Player objects, and now the code is trying to assign a Stack of Location
objects. So from the point of view of the compiler, you expected a Player and
instead got a Location.

The compiler, of course, is wrong.

That’s because no compiler can really infer your intent. The compiler can only
judge what you've actually done, not what you intended to do.

Always bear that in mind when trying to decipher compiler error messages:
they are from the compiler’s point of view, and it cannot read your mind. At
least not yet. We're working on it.

At any rate, correcting the type of the Stack to match corrects the problem:

Stack<Location> locs = playerTeleports.get(player.getName());

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 1. How to Read Error Messages ® 216

Canary Server Error Messages

The Canary server will display error messages either in the server log (at
~/Desktop/server/logs/latest.log) or right in the Minecraft game console as you're
playing. Here are the most common errors you might see with a new plugin.

Server Log: Plugin Won’t Load

Most errors in the log file or in the server’s console (in your screen session) are
more straightforward than the compiler error messages. One of the most
critical and common ones is this error:

[SEVERE] Could not load 'plugins/HelloWorld.jar' in folder 'plugins'
net.canarymod.exceptions.InvalidPluginException:
java.lang.ClassNotFoundException: helloworld.HelloWorld

You've written a new plugin, and you're getting an error that it can’t be loaded.

This usually means the package name and plugin name specified in your
Canary.inf file don’t match the package name and class name in the code. Check
your spelling. Remember that the package name is customarily all lowercase,
and that the class name is mixed uppercase and lowercase.

Minecraft Console: Unknown Command

If the plugin compiles okay but Minecraft gives you the “Unknown command”
error, be sure to check in your @Command() annotation to make sure you've
spelled the command correctly, and if you've specified a min number of argu-
ments or a permission setting, that those are correct as well.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 2

How to Read the Canary Documentation

Many times you’ll need to read the Canary documentation directly to find out
how to do something in the Minecraft world involving a Block, a Player, an Ocelot,
a Cow, a Creeper, or whatever. You need to find out what classes to use and
what functions they offer. The Canary documentation lists this information
for you, and we’ll take a quick look here at how to find it.

Canary JavaDoc Documentation

The Canary JavaDoc documentation is centered on the system’s classes,
listed within their packages. Here you'll find the following:

e The package name, which is what you use in the import statement.’

e The class name, which is what you use to declare variables and create
objects with new.”

e The functions (methods) in the class that you can run with () and
paralmeters.3

e Parent classes or interfaces that it uses, which will include additional
functions you can call.*

Point your browser to the Canary documentation, and all the hidden treasures
of Canary are yours!® Ah, but what does all this stuff mean? And where is
everything?

1. Chapter 2, Add an Editor and Java, on page 15, and Appendix 7, Common Imports, on

https://ci.visualillusionsent.net/job/CanaryLib/javadoc
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 2. How to Read the Canary Documentation ® 218

On the left side of your screen, there’s a listing of all of the top-level package
names in Canary, starting with net.canarymod.

Throughout the doc, you'll see links. Click on a link, and all the children of
that element will show up. Click on a package in the upper-left corner, like
net.canarymod.api.world, and all the classes and such in that package will show
up in the lower-left panel.

f the dimensions containing a world
Author:
Chris (damagefiter), Jos Kuijpers

Nested Class Summary

Modifier and Type. Interface and Description
static class

Method Summary

aaaaaa ype
Word Diffcuty othod

Exceptions Modifier and Type.
void

Click on World in the lower-left panel, and you’ll see all the functions (methods)
you can use in a World. Click on any method or class name for more details.

Oracle JavaDoc Documentation

If you're looking for general Java class documentation, not just the Canary-
specific classes, point your browser to Oracle’s documentation on the Web.*

It looks pretty much the same as the documentation on the Canary site (see
Figure 6, JavaDoc for Java, on page 219).

In the upper-left corner, there’s a scrolling list of the packages, including very
useful ones like java.util and java.math. Under that is a list of interfaces (like
classes, but without their own functions) and the classes in that package. In
the right-hand pane is the documentation for the class you've clicked on.
Here I've gone to the package java.util, the class ArrayList.

The class documentation is great when you know roughly what you want but
need the specifics. But what if you don’t know where to start?

6. http://docs.oracle.com/javase/7/docs/api

http://docs.oracle.com/javase/7/docs/api
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

The Wiki and Tutorials ® 219

Java™ Platform Overview Package m Use Tree Deprecated Index Help

Standard Ed. 7 e
All Classes Prev Class Next Class Frames No Frames

‘Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method
Packages

java.util

java.applet
java.awt Class ArraylList<E>
java.awt.color
java.awt.datatransfer
}ava.awr dnd java.lang.Object

java.awt.event

Interfaces Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess
Coflection Direct Known Subclasses:
gg;”j:ra“’r AttributeList, RoleList, RoleUnresolvedList
Enumeration
EventListener . .
Formatiable public class ArrayList<E>

extends AbstractList<E>
fz’ram’ implements List<E>, RandomAccess, Cloneable, Serializable
Listiterator Resizable-array implementation of the List interface. Implements all aptional list of
Map implementing the List interface, this class provides methods to manipulate the size
Map.Entry equivalent to Vector, except that it is unsynchronized.)
NavigableMap
NavigableSet The size, isEmpty, get, set, iterator, and listIterator operations run in ci
Observer adding n elements requires O(n) time. All of the other operations run in linear time (1
Queue LinkedLiet implementation.
RandomAccess
Set Each ArrayList instance has a capacity. The capacity is the size of the array usec
SortedMap As elements are added to an ArrayList, its capacity grows automatically. The details
SortedSet has constant amortized time cost.
Classes An application can increase the capacity of an ArrayList instance before adding 2

java.util. AbstractCollection<E>
java.util. AbstractList<E>
Java.util ArrayList<E>

All Implemented Interfaces:

reduce the amount of incremental reallocation.
AbstractCollection

AbstractlList Note that this is not synct . If multiple threads access an
AbstractMap the list structurally, it must be synchronized externally. (A structural modification is al
AbstractMap. SimpleEntry the backing array; merely setting the value of an element is not a structural modifical
AbstractMap. SimplelmmutableEntry naturally encapsulates the list. If no such object exists, the list should be "wrapped”
AbstractQueue creation time, to prevent accidental unsynchronized access to the list:

Figure 6—JavaDoc for Java

The Wiki and Tutorials

Hopefully this book has given you a good idea of where to look for specifics
about Blocks made of different BlockTypes, and different kinds of Entity objects.
But what about something we haven’'t covered?

In addition to the class-based documentation, the Canary site contains tuto-

There’s also a forum where you can ask questions and ask for help at
http://canarymod.net/forum.

And don'’t forget about this book’s forum at the Pragmatic Bookshelf website,
where you can ask questions and post comments about this book itself, along
with anything really cool you've discovered that you'd like to pass on.”

7. https://forums.pragprog.com/forums/382

report erratum -« discuss

http://canarymod.net/books
http://canarymod.net/books
http://canarymod.net/forum
https://forums.pragprog.com/forums/382
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 3

How to Install a Desktop Server

So you have your great new custom plugins running on the server on your
computer, and you want your friends to be able to connect and play along.

There are two ways to go about that: set up your own personal computer for
your friends to access, or set up a permanent server in the cloud. (See how
in the next appendix, Appendix 4, How to Install a Cloud Server, on page 229.)

To use your own computer, remember that it needs to be powered on and
running your Minecraft server for that to work. If you're okay with that idea,
here’s what you need to do.

There are two main issues to address:

* You need a mechanism for your friends to find your machine’s address
on the Internet.

* You to need to make your Minecraft port, 25565, open to the world.

There are several ways to go about this. The easiest is to use a piece of software
that does all the work for you. You can also take care of all the bits by hand,
which is more fun but more work.

The Easy Way: LogMeln

Hamachi is a product available from LogMeln in a free version (“Unmanaged”)
for up to five users,' as well as a more feature-rich paid version (“Managed”)
for Windows and Mac computers.

It sets up an IP address for your friends to connect to. You don’t need to mess
with your firewall or router or anything locally; it just works. To set it up,
first download the Unmanaged version and install it.

1. https://secure.logmein.com/products/hamachi/download.aspx

https://secure.logmein.com/products/hamachi/download.aspx
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 3. How to Install a Desktop Server ¢ 222

In this and the next appendix, you'll see references to network ports and Minecraft's

default port of 25565. A port is just an agreed-upon number that lets computers
communicate over a network. For example, browsers use ports 80 and 443 to talk
with web servers.

When you first run it, LogMeln will ask you to join or create a network:

You are now online, but this computer is
not yet a member in a Hamachi network

[Join network] [Create network]

You'll want to create one. I named mine andys_minecraft_server:

I _J 006 LogMeln Hamachi L_

Create a new client-owned (?) network

Network |D: | |

Used to locate and join network.

Password: | |

Used to restrict access to network.

Confirm Password | |

| Cancel | Create

or

Log_in to create a new managed (7) network

Managed networks can be administered centrally on the web, and support
advanced functionality such as gateway networks or hub & spoke topclegy.

— T—

And we’re up and running!

HNeoe LogMeln Hamachi

(0] 25.160.110.165 / 2620:9b::19a0:6
MBP2013.local

¥ @ andys_minecraft_server 1/5

Now tell your friends to download the same software and join your network
with the name you picked (like andys_minecraft_server).

report erratum « discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

The Harder Way: By Hand ¢ 223

They can join your network. When they right-click on your network name,
they should select Copy IPv4 Address and use that in the Minecraft client to
connect to you.

Ping

Ping 135-621-876.local

Browse Apple file shares (afp://)

Browse Windows file shares (smb://)
Chat

Copy IPv6 address
Copy 135-621-876.local

Evict...
Details

When you don’t want your friends connected, just click the power-switch icon
to turn your network off.

You're done.

The Harder Way: By Hand

To set up your computer to be open and findable on the Internet without the
help of something like LogMeln isn’t magic, but it does take some work. Here
are some advantages of doing it the “hard way”:

e It’s free.

* You can connect more than five users if you want.

* You can be available to the whole world, not just your friends.
* It's really interesting and useful stuff to learn.

You'll need to learn a little bit more about networking and how the Internet
works. I'll outline the important steps here, but you may need to do some
additional reading on your own. Most importantly, I can’t give you exact step-
by-step directions because every router (or cable modem, DSL modem, and
so on) is different. But you can find that information online with help from

Let’s look at the steps.

First, your friends need to find your machine.

http://portforward.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 3. How to Install a Desktop Server ¢ 224

Static vs. Dynamic DNS

An IP address is a number that anyone in the world can use to connect to
your server. An IP address is usually shown as four numbers separated by
dots: 93.184.216.119 (example.com) or 127.0.0.1 (your local machine, localhost).

Your ISP probably changes your IP address every so often; you aren’t guaran-
teed to get a the same IP address each day unless you pay extra for a static
IP. If you knew to ask for a static IP, you probably already know how to set
up a domain name and DNS server to point to your machine (if not, and you
want a static IP, check out the end of Appendix 4, How to Install a Cloud
Server, on page 220), e

But you don’t need a static IP for your friends to find you. There’s a trick that
lets you use your changing, dynamic IP just as easily.

First off, if you don’t know what your IP even looks like, point your browser
to this URL: http://www.checkip.org.

And that’s what your IP looks like to the outside world.

If that changes every few hours or every few days, that can be annoying, as
you have to keep telling your friends what IP address to use to connect to
you. But you're in luck! You can get set up with a dynamic DNS registration

They’ll get you set up so that your friends can use a friendly name to find you
on the Internet—something like andyminecraft.dns.org.

Now that they can find your machine, you need to let them in.

Open Up Your Firewall

Windows, Mac, and Linux machines, as well as your cable modem or ISP’s
router, can all run firewall software, which is designed to block exactly what
were trying to accomplish here. The idea is that twisted, evil griefers are
always trying to attack your machine and break in. So most machines run
some kind of firewall to lock out every port except the ones you really want
to have open and are expecting.

So first you need to make sure your computer is open to port 25565. How
you do this depends on the operating system you are running.

http://www.checkip.org
http://dyndns.org
http://www.noip.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

The Harder Way: By Hand ¢ 225

Open Up Your Firewall on Windows

On Windows 8, start typ-

ing Firewall, and Metro will

guide you through to

“Allow an app or feature

through Windows Fire- ﬁ Windows Firewall

wall.” See the Windows Allow a program through Windows Firewall
. . Check firewall status

online documentation for

more.> On Windows 7, w Action Center

Check security status

[» Control Panel »

search the Control Panel
for “Firewall” and “Allow a
program through Windows
Firewall”:

.@. Search Windows Help and Support for "firewall”

Then enable public access for Java:

!;E!E » Control Panel » Systemn and Security » Windows Firewall » Allowed Programs

Allow programs to communicate through Windows Firewall

To add, change, or remove allowed programs and ports, click Change settings.
What are the risks of allowing a program to communicate? %) Change settings

Allowed programs and features:

Mame Home/Work (Private) Public *
Hearthstone O
Ohiz O
HomeGroup O m
[1iSCSI Service O O |i|
[l Java(TM] Platform SE binary O
[l Java(TM] Platform SE binary
Leap Motion Service

Open Up Your Firewall on Mac OS X

Open System Preferences and go to the Security & Privacy panel:

800 Security & Privacy

[«]»][showal (Q
B
| General & FileVault = Legacy FileVault M|

A Firewall: On | Turn Off Firewall |

The firewall is turned on and set up to prevent unauthorized applications, programs,
and services from accepting incoming connections.

| Firewall Options...

2. http://windows.microsoft.com/en-us/windows-8/windows-firewall-from-start-to-finish

report erratum -

discuss

http://windows.microsoft.com/en-us/windows-8/windows-firewall-from-start-to-finish
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 3. How to Install a Desktop Server ¢ 226

If the firewall is turned off (not enabled), then you're good to go. If it’s turned
on, make sure Java has permission to allow incoming connections:

Block all incoming connections
Blocks all incoming connections except those required for basic Internet services,
such as DHCP, Bonjour, and IPSec.

(@ iTunes @ Allow incoming connections *
M java @ Allow incoming connections*
M kde @ Block incoming connections s
M eapd @ Block incoming connections+
@ Minecraft @ Allow incoming connections~
M mysqld @ Block incoming connections*
M NetAuthSysAgent A Allow incoming connections*

e

Automatically allow signed software to receive incoming connections

Allows software signed by a valid certificate authority to provide services accessed from
the network.

Enable stealth mode

Don't respond to or acknowledge attempts to access this computer from the network
by test applications using ICMP, such as Ping.

©] Cancel | [oK |
|

Open Up Your Firewall on Linux

If you've set up a firewall using [PTables, make sure port 25565 is open.

For All Operating Systems

However, opening up the firewall on your computer itself may not be enough.

To check if the Internet can get to your port, point your browser to
’I‘ypemtheportto check as 25565, and click Check Port. If it works, you're
good to go. If not, there’s one more thing you might need to do.

If you are connected to the Internet through a router or cable modem, then
that device may have a firewall as well. Also, even if it has the port open to
the Internet, you need to forward the port traffic from the router to your local
computer.

Port Forwarding

You need to exercise caution and restraint when changing settings on your
router. If you change something you didn’t intend to, you could end up
mucking up the device and losing your Internet access. So stick to the plan
here. However, every router is different, so I can’t really give you specific step-
by-step instructions. Here are the basics:

1. Log on to your router. You may already know the user name and password
for it. If not, it may have a default user name and password that you can
Google for.

http://canyouseeme.org
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

The Harder Way: By Hand ¢ 227

2. On some menu it will have a section for Port Forwarding. On my router
it was listed under “Gateway” and “Forwarding.”

3. You need to tell it to forward port 25565 (both TCP and UDP if it asks)

to your computer’s internal IP.

Your computer has an internal IP address, which is used for communication
between it and your router/cable modem. You can run a command on your
computer to see what that address is:

Windows
Run ipconfig, and look for “IPv4 Address” under “Ethernet adapter” or
“Wireless LAN.”

Mac/Linux
Run ifconfig. It’s probably listed under “inet” then “enl.”

You might be able to Google for more specific information for your router

One last complication: your internal IP address might change every so often,
just like your ISP’s IP address can change. If you're getting the IP address
from a DHCP server on your router, you can also tell it to create a DHCP
reservation so that you always get the same internal IP address. Or you can
just go in and change the port forwarding when (or if) your internal IP address
changes.

If you're having friends in only occasionally and don’t mind the setup hassle,
this is a perfectly fine way to work. But if you want more than a few folks to
connect, and you want the server up 24x7, you'll need to set up a server in
the cloud, which is detailed in the next appendix, Appendix 4, How to Install
a Cloud Server, on page 229.

Many modern routers have a feature where you can specify the desired Quality of
Service (often called QoS) for different ports/services. The idea is that you can set a
high or low priority on different kinds of network traffic.

You might find that useful when running a local Minecraft server: you can set the
Minecraft port to have a very low priority.

Putting the Minecraft port at the lowest setting will ensure that your own traffic gets
priority over your friends using your server.

report erratum -« discuss

http://www.checkip.org
http://portforward.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 4

How to Install a Cloud Server

You can run a Minecraft server on your own computer, but there are some
drawbacks to doing that. The biggest one is that your computer needs to be
powered on and connected to the Internet 24x7. That’s a little difficult on a
laptop. Also, anything youre doing personally on the computer may slow
down the Minecraft server and all your players—and anything the server is
doing will slow down the other programs on your computer. So if a lot of folks
want to connect to your server and play on it, you might prefer to set up a
remote server in the cloud.

Setting up a Minecraft server in the cloud is very similar to setting up a
server locally, with one important difference: you don’t have physical access
to the computer that’s running your Minecraft server. That means no key-
board, no screen, no power switch or reboot button. But no worries; you know
how to use the command line, and that’s all you need.

We'll see what this all means and how to work with it in this appendix.

What Is the Cloud?

Some say that “the cloud” is really just a big rack of computers in Virginia.
That’s actually not far from the truth, as Amazon and others do maintain
large data centers in that area, plus in California and many other spots around
the world. “The cloud” is just a bunch of computers somewhere on the Internet.

When people talk about a computers in the cloud, they mean a computer
that is accessed only over the Internet, that you might not even know (or care
about) the physical location of, and that someone else owns and maintains.
As you can see, that’s a pretty generic and flexible definition. A huge variety
of cloud services is available, with an equally huge range of pricing, reliability,

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server ¢ 230

and what you get for your money. There are two major types of services you
might be interested in:

e Minecraft-specific: The service provider does all the work of maintaining
and administering the server. The provider will load or provide plugins,
possibly handle griefers and attacks, and keep the server running. You
don’t have to do anything. You may be charged by the number of players
online at once instead of being charged for the size of the server.

e Generic: The service provider supplies a running system and a login, but
nothing else: you have to install Java and Canary, load and provide plug-
ins, administer the server, reboot it if it gets hung up, and so on. You are
usually charged based on the number of CPUs, the amount of RAM, and
possibly the amount of network traffic used each month.

While you might want to look at a Minecraft-specific provider, it’s a trade-off
between ease of use and control. In this case you don’t get much control over
the server; you might have to ask to get plugins loaded, and the service might
load only well-known plugins, not your development version.

Instead, what you probably want is known as a virtual private server, or VPS
for short. There are tons of VPS providers on the Internet, with different
pricing plans and packages, located in different countries with different
hardware and features available. Just Google “VPS providers.”

A VPS looks like an entire computer to you. You can log on and have all the
files and processor to yourself. In reality, you're sharing a big piece of hardware
with a bunch of other people. But everyone sees what looks like a whole
computer that is all theirs. That means that as an administrator of the system,
you can install any software you want. You can add user accounts, reboot,
and set up your own domain name (like example.com or andy.pragprog.com).

The good news is that you can work on the remote server using a command-
line shell, just like we've been doing all along, because your remote server is
probably running Linux.

Remote Operating Systems

Virtually all VPS services offer one operating system for your server: Linux.
Some providers, such as Microsoft with its own Windows Azure cloud service, '
can offer Windows, and a small number offer Mac OS X. But these are rare
and relatively expensive. The vast majority, including Amazon’s cloud service,

1. http://www.windowsazure.com

http://www.windowsazure.com
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Remote Operating Systems ® 231

While pricing and features can vary a lot for VPS offerings, here are some commonal-
ities and things to look for:

e Most VPS systems include a web-based front end (one named cpanel is very pop-
ular) that allows you to reboot the system, add users, and that sort of thing.

e While a fast computer is always good to have, Minecraft is more sensitive to the
amount of RAM you have available. You want a package with as much RAM as
you can get—at least 2 GB (gigabytes), and often 4 GB or so.

e As I write this, several good providers have systems available for between $20
and $50 a month. That'’s a lot of money for a hobby, but you can help support
the server by asking for donations from your players. Even a few dollars per
player can fund your server. However, there might be issues with your govern-
ment’s laws and tax codes once you start taking money, so you should check
with someone in your area who knows about such things before you start.

Some providers allow unlimited network traffic (“bandwidth”), and others set a cap.
Just as with many cell-phone plans, if you exceed the bandwidth cap the provider
will charge you more money.

Some providers may do the same thing with RAM or disk storage: you're allowed a
certain amount, and if you exceed that they’ll start charging you extra.

When comparing plans, just be sure to add up the extra fees that you might have to
pay.

offer some “flavor” of Linux, a Unix-like, largely POSIX-compliant operating
system.2

But Linux isn’t just one thing. Linux is really a bundle of the core operating
system plus all the extra bits: the windowing system, utilities, programming
languages, and so on. A particular bundle is known as a distribution, and
each one is a little bit different in terms of what’s included, what’s not
included, how you install software, and how and when it gets updated.

These are some popular distributions, listed more or less in order of popularity:

e CentOS
e Ubuntu
e Fedora
¢ Debian
e Linux Mint

2. POSIX stands for Portable Operating System Interface, a standard for operating-system
compatibility.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server ® 232

Before you panic over all these different bundles, realize one very important
and comforting thing: the command-line shell, bash, works the same on each
and every one of these distributions. All the commands we've used in this
book, such as Is, cp, and cd, all work exactly the same no matter which Linux
flavor you choose.

Ubuntu and CentOS seem to be the most common server distributions at the
moment. Most VPS services will let you choose which distribution you want
from a small selection of offerings.

The biggest difference you’ll run into from one distribution to another is their
package management: what tool you use to install software packages, and
what packages are included by default.

Remote Access

To log in to your remote server’s command-line shell, you need to use a set
of programs known as SSH (which stands for “secure shell”). ssh is the com-
mand you run to connect to the server; it’s the client. The server is running
sshd (for “ssh daemon”), and that’s what you connect to. Your server might
already be running an sshd. We’'ll get to that shortly.

You can use ssh to connect to a server, and its companion program, scp, to
copy files to the server (scp works a lot like plain cp).

ssh just needs to know the user name and server name or IP address you're
connecting to, which you can specify like an email address, using the “@”
sign:

$ ssh andy@example.com
Password:

Or if you don’t have a name yet, you can connect using the IP address:

$ ssh andy@93.184.216.119
Password:

You may have been given an account name to use already, or you may need
to make one using the web interface from your VPS provider.

You use the same sort of notation with scp to copy a file. Here we're copying
a local text file named myfile.txt up to the server example.com, logging in as andy,
and copying the file to my home directory (“~/”).

$ scp myfile.txt andy@example.com:~/myfile.txt
Password:

(Again, you could also just use the IP, as in andy@93.184.216.119.)

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Remote Access ® 233

Notice that when you use ssh or scp without doing anything else, it will ask
you for your password on the remote machine. Every time. That gets tiresome
pretty quickly, so fortunately there’s a better way to set up your remote login.

Windows users might not have have access to the ssh and ssh-keygen command line
programs; instead, you can use a Windows application named “PuTTY.”® to generate
keys and login to remote systems.

a. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Set Up SSH Keys

This setup takes a couple of steps, but they are pretty straightforward. We’ll
go into the details next, but the overall steps are as follows:

1. Generate a special set of secret keys, including a “public key.”
2. Copy the public key to the remote machine.
3. Make sure the public key is secured on the remote machine.

Once that’s done, you can use ssh and scp without having to supply a password.
That means you can use ssh and scp from shell scripts—which can be very
handy when you need to do a bunch of things to the remote machine.

Here are the steps in detail.

First off, change to your home directory and use ssh-keygen to generate a set
of RSA-style keys:®

$ cd
$ ssh-keygen -t rsa

When asked for a passphrase, press Enter—don’t input text at this point. That
command will make a subdirectory named .ssh under your home directory.

Because of the leading dot (“.”) you won’t normally see this directory listed
with Is, but Is -a will show it:

$ ls -a
.profile .ssh (and a bunch of other stuff)
$ cd .ssh
~/.ssh$ 1s
id rsa id rsa.pub known hosts

3. RSA is a public-key-style cryptographic system, named for its inventors.

report erratum -« discuss

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server ¢ 234

Your public key is id_rsa.pub, and you’ll need to add that to a file named
~/.sshfauthorized_keys on the server.

To do that, make the .ssh directory on the server first. I'll show the login prompt
on the server as Server $ so you can tell which machine I'm on.

$ ssh yourname@example.com

Password:

Welcome to My Awesome Minecraft Server

Last login: Mon Feb 16 12:16:57 from xyzzy-plugh
Server$ mkdir .ssh

Now back on your computer, copy the id_rsa.pub file (or whatever your .pub file
is named) up to the server using scp, putting it in the .ssh directory and
renaming it authorized_keys:

$ scp id_rsa.pub yourname@example.com:~/.ssh/authorized_keys

@ 9

That will copy the file to your .ssh directory under your home (“~”), and name
it authorized_keys. If you want to later, you can add keys from other machines
into this file (that’s why “keys” is plural). But for now you just have this one
entry.

Finally, you need to go back on the server and check and fix the file permis-
sions. The .ssh directory should be readable and listable only by you, and the
files inside should be readable by you alone. In most cases, ssh will not work
at all if the file permissions aren’t restricted. It’s for your own good.

You can set the file permissions using the chmod command:

$ ssh yourname@example.com

Password:

Welcome to My Awesome Minecraft Server

Last login: Mon Feb 16 12:26:13 from xyzzy-plugh
Server$ cd .ssh

Server ~/.ssh$ chmod 700 .

Server ~/.ssh$ chmod 600 authorized keys

Now from your computer, you should be able to ssh or scp without having to
specify a password:

$ ssh yourname@example.com

Welcome to My Awesome Minecraft Server

Last login: Mon Feb 16 12:32:07 from xyzzy-plugh
Server$

And we're in!

Your next question may be, “Swell, but how do I get OUT?” Fair enough.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Remote Access ® 235

The environment variable PS1 sets your prompt string for bash. In that string, you
can use \w to print out the current directory. So if you set

$ PS1="'Server \w\$ '
your prompt will come back as
Server ~$

Stick this in your bash startup file to make the change permanent (as we saw back
in Chapter 2, Add an Editor and Java, on page 15).

You can log out by pressing Ctrl-d or by typing exit. And now you're back to
your local shell.

Admin with Root

On any modern system, an ordinary user doesn’t usually have full permissions
to do everything on the system. You usually have to type a password to get the
authority of an administrator on the system. On Windows machines this account
is called Administrator, and on Linux and Mac systems it’s called root.

While you can log in directly as root with the appropriate password, that’s
usually frowned upon. It’s too easy to make a typo and suddenly blow away
half your system. Root is ultimately powerful, and with great power comes
great responsibility.

But you still need to be able to execute certain commands as root without
logging on as root. You can do that using the sudo command, which lets you
do as the super user root would do. You preface the command you want to
run with sudo, and it will prompt you for your normal user account password.
Get it right, and then the rest of the command will be executed as root. For
example, here I'm using sudo to run an adduser command to add the user “fred.”
Remote $ sudo adduser fred

Password:
User 'fred' added.

This way it allows you to have the full power of root, but only in limited,
controlled, well-known circumstances, and not just logged in as root.

In fact, if your SSH is set up so that it does allow root to log in directly, you
should look up how to disable that feature. That way you have to log in using
your user account and SSH key, and then provide your password via sudo.

report erratum -« discuss

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server 236

That’s the safest way to allow root access for yourself, and not for the millions
of hostile attackers who are eyeing your system at this very moment.

Securing Root Access

You might already be set up to use sudo. Log in to your server and try running
some simple command (like id, which just reports who you are) using sudo:

Remote $ sudo id

[sudo] password for andy:

uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),
4(adm),6(disk),10(wheel)

It worked! This machine is already set up so that I can sudo. But on a machine
that isn’t set up, you’ll get this scary warning;:

andy is not in the sudoers file. This incident will be reported.

Yikes! Sounds like the cops will come after us. Have no fear: it’s only logging
the attempt to a log file. All it means is that you have to add your name to
the permissions file for sudo.

To do that, log in as root and add the following line to the bottom of the file
Jetc/sudoers (nano is a convenient editor to use over SSH; we’ll cover how to install
that and more in the next section):

andy ALL=(ALL) ALL
But use your username, not “andy”—unless your username actually is Andy.
Save the file and try to use sudo again.

Once you can successfully ssh in without a password, and you can use sudo
to do things as root, then you can turn off the use of passwords and not allow
root to ssh in directly.

Now obviously that sounds a little dangerous, as you could accidentally lock
yourself out of the computer. To help prevent that, open one window and log
in to your server as root. Leave that window open and leave it alone, then
open a second window to start changing settings. In case you mess up and
can’t log in or sudo for some reason, you have this window still open—as root,
the Great and Powerful—as a backup.

In your new window, log in as root and edit the file /etc/ssh/sshd_config. You want
to find these two lines and uncomment them, or change them to read no:

PasswordAuthentication no
PermitRootLogin no

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Installing Packages ¢ 237

Then you need to restart the SSH daemon. On many systems you can do that
by using this:

Server $ sudo service sshd restart

You might also want to change the default port from 22 to some other number.
Since everyone knows that port 22 is SSH, attackers will bombard your
server with attacks on that port. You should be safe by turning off root login
and passwords, so that you have to have a public key to log on, but if you
want to move to a different port to avoid any attacks, here’s what you do.

In that same config file (/etc/ssh/sshd_config), add or change this line:

Port 2345

But pick a number other than 2345. You want a number greater than 1024,
and preferably a number that does not appear in the file /etc/services. Those
are numbers that other services might already be using (including 80 for web
traffic).

When using ssh to connect to the server, you’ll have to specify the new port
number, which you can do with the -p option:

$ ssh -p 2345 andy@myexample.com

Installing Packages

Your Linux distribution may come with everything you need. Or it might be
missing a few parts. To help keep things manageable, Linux breaks up all
the utilities and programs into different software packages. For example, if
you're not doing any work with publishing, you won’t need TeX or Ghostscript.
If you're not programming in C or C++, you won't need GCC. If you're not on
a desktop machine, you probably don’t need a window manager like Gnome
or KDE.

All of these packages of software can be installed, removed, updated, and
listed using a package manager. Every major Linux distribution uses a differ-
ent package manager. In fact, you could almost say the package manager is
what distinguishes one distribution from another, although there is some
sharing going on.

Popular package manager commands include yum, rpm, apt-get, and deb.

The details for each of these commands are different, but they all basically
do the same thing: download and install a software package for you.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server © 238

In particular, if you don’'t have SSH installed yet, you'll need the open-ssh
package installed so you can log on to your server in a secure way. On
Ubuntu, you'd run a command like this:

$ sudo apt-get install openssh-server

sudo runs the command as root; apt-get is the package-manager command
under Ubuntu, and you're giving it the option to install the package named
openssh-server.

On CentOS, you’d run a very similar command, but using yum instead of apt-get.
$ sudo yum install openssh-server

Similarly, you’ll probably need a text editor on the server. You can’t really
run a full visual editor on the remote server over the Internet,* so you'll
probably want a simple screen editor like nano:

$ sudo apt-get install nano

Installing Java

No matter what optional packages you may need or want, at a minimum you’ll
need Java to run your server. You can install it just like we did earlier in the
book, but bear in mind one important detail: you need the official Oracle
(formerly Sun) version of Java. The OpenJDK version of Java, which may be
available or already installed on your system, is known to cause problems
with Minecraft.

You may need to uninstall OpenJDK using your system’s package manager.
For instance, to remove the 1.6 version on a system that uses the Red Hat
Package Manager (RPM), you’d run this:

$ rpm -e java-1.6.0-openjdk

Now go get the good Java. You’'ll have to download the installation program
on your local computer, then scp it up to your server.

version (depending on your server) and follow the instructions for your flavor
of Linux.

You’'ll need to set up your start_minescraft script and jars on the server just as
we did locally back in Chapter 2, Add an Editor and Java, on page 15.

4. Actually you can, using the X Window System (XWindows), but it’s fussy to set up and
not a very satisfying experience.

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp
http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Running Remotely ¢ 239

Running Remotely

There’s a slight hitch with running a script like start minecraft when you're
logged in via ssh. As soon as you log out, the script will be killed. That’s not
very helpful in a server environment.

Fortunately, you can use a command named screen to keep Java running even
though you've logged out.” It takes an argument string of -d -m -S followed by
a name for your server session. We’ll use mcserver to name the session, so the
new server-style startup script will look like this:

#!/bin/bash
cd "$(dirname "$0")"
screen -d -m -S mcserver java -Xmsl024M -Xmx1024M -jar CanaryMod.jar --noControl

(Remember, start minecraft needs to be executable; be sure to do a chmod +x
start_minecraft if you get a “permission denied” error.)

That will start the server off in its own little world, which won’t be affected
by you logging off. If you want to “attach” to the server so you can issue
commands and such, use screen with the -r option and the session name:

$ screen -r mcserver
And you’ll be attached to the server with the usual spew and prompt:

16:47:49 [INFO] Done (1.163s)! For help, type "help" or "?"
>

To detach from your server session, press Ctrl-a then d. You’'ll be returned to
your original shell, and your server will still be running in the background.

To see what processes you have running, use the ps command:

Server ~$ ps
PID TTY TIME CMD
337 ttys000 0:00.09 -bash
842 ttys020 0:13.78 /usr/bin/java -jar CanaryMod.jar

And to see all the processes on a machine, try ps ax. (ps-? will list the options.)

In a pinch, if you need to kill off all Java processes, you can use

Server ~$ killall java

That asks Java to do some cleanup and exit in a safe and reliable manner.
However, if it’s stubborn and won’t behave, you can use the brutal

5. There’s a slightly simpler way to do this using the command nohup (named for “No
Hangup”); however, you lose the ability to enter commands to the server easily.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 4. How to Install a Cloud Server ¢ 240

Server ~$ killall -9 java

which will kill all Java processes dead, right now. Period.

Domain Name

When you first set up your VPS, your VPS provider will tell you the IP address
for your server. That’s the number anyone in the world can use to connect
to your server. An IP address is usually four sets of numbers with periods in
between, like 93.184.216.119 (example.com) or 127.0.0.1 (your local machine,
localhost).

You can set up a domain name so that folks can find you by a name like
pragprog.com or example.com instead of a number like 93.184.216.119. Your
VPS provider may even be able to arrange this for you as an optional service,
or you can use one of many providers on the Internet.

Typical costs are around $10-20 a year for domain name registration. That
gives you the right to use your name. You also need someone to run a DNS
hosting server that says your name corresponds to your IP address. Many
registrars offer this service in addition to the name registration itself, or you
can use a separate vendor.

To find out if the domain name you want is available, you can use the com-
mand-line tool whois. Be careful using any other tools to check for a domain
name: squatters and other unsavory sorts have been known to watch for
domain name searches on the Web and grab the name before you can, then
try to sell it to you for a lot of money.

As with any service on the Internet, check around for reviews and comments.
Some big-name DNS providers that advertise heavily during major sporting
events have a very bad reputation.

What’'s Next

These few pages scratch the surface of what can be very deep topics.

There’s a lot you can do as a Linux system administrator that we haven’'t
covered, including running tasks at particular times, backing up data,
applying system security and update patches, preventing griefers, tuning
performance, and setting up your own email server—all kinds of fun.

Whole books are written on these topics, and this isn’t one of them. But
hopefully this is enough to get you started.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 5

Cheat Sheets

Enthused by reading a chapter, you're sitting down to write some code only
to get stuck: how do you do that thing in Java, again? It happens to all of us
when learning a new language. One of the first things I do when trying to
work in a new language is to find or write a “cheat sheet” to help me remember
the details.

Java Language

This is not a complete list of every Java feature—it’s just the important bits
you might need, shown as examples in most cases.

Literal Data Types
Whole numbers
inti=7,i=-5;
Numbers with fractional parts

double num = 3.14; num = 0.01; num = -3el5 (means -3 times 10 to the 15th power)

True or false
boolean shouldGetUp=true; shouldGetUp=false (or any Boolean expression that
resolves to true or false)

String of text characters
String s="Hello";

Array
String[] grades = {IIAII, IIBII’ IICII, IIDII’ IIFII’ Illncll};

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 5. Cheat Sheets ¢ 242

Math Operators

Add
a+b

Subtract
a-b

Multiply
a*xb

Divide
alb

Remainder
a % b (for whole numbers—integers—only)

Specify order of terms
((@a + b) *2) (a + b will be added first, then multiplied by z)

True-or-False Comparison Operators

Equal to
a==

Not equal to

al=b

Less than
a<b

Greater than
a>b

Less than or equal to
a<=b

Greater than or equal to
a>=b

And
a && b (must be something that’s true or false)

Or
a || b (must be something that’s true or false)

Not
la (must be something that’s true or false)

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Java Language ® 243

Java Language

Declare the package
package name.name.name;, usually using the inverse of your domain name,
so a project Wonderful from the guys at pragprog.com would be in the
package com.pragprog.wonderful.

Import a class
import net.canarymod.api.entity.living.humanoid.Player tells the Java compiler you
want to use this class. You can use a wildcard of “*”—as in inet.canary-
mod.api.entity.living.humanoid.*—but you may get more uninvited classes than
you wanted.

Declare a class
public class name { }.

Declare a function
public return-type name (argument types and names), as in public int myFunction().

Declare a block of code
Use braces, { and }.

Declare variables
type name; as in inti; or Stack<Location> myLocations; generics need the specific
type(s) added within the angle brackets < and >.

Assign values to variables
a =10; s = "Bob"; x=3.1415;.

Make decisions
Decide which code to run using an if (the else {} part is optional):

if (true or false comparison) { // is true
doThis();

} else { // is false
doOtherThing();

}

Loops
There are three ways to make a loop around a block of code:

¢ for-each construct: for(type variable : collection) Example: for (Player player :
playerList) { block }

e for loop: for (int i=0; i< limit; i++) { block }

¢ while loop: while (somethinglsTrue) { block }

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 5. Cheat Sheets ® 244

Create a new object
Foo thing = new Foo();, where Foo is the name of the class and thing is the
variable to be assigned to the new object.

Call a function
Use parentheses, as in getServer(), which returns a Server object for a plugin.

Java Visibility Modifiers

final
Don’t let me—or anyone else—change this value once I set it.

static
Keep this data or function around outside any given object.

You can mix and match final and static as needed.

public
Anyone else can see and use this function or data.

protected
This class and other classes in this package can see and use this function
or data.

private
Only this class can see and use this function or data, not subclasses or
other classes in the same package.

You use either public or private per declaration, so this code would create a
publicly visible, unchangeable constant outside of any object:

public static final int pi = 3.1415;

Java Data-Type Conversions

int to double
Assign it: int now = 72; double temperature = now;.

double to int
Cast it; the fractional part is discarded: double when = 15.375; int day = (int)when;.

String to int
Use parselnt: int foo = Integer.parselnt("365");.

String to double
Use parseDouble: double foo = Double.parseDouble("3.1415");.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Java Language ® 245

double to String
Use valueOf: String.valueOf(3.1415);.

int to String
Use valueOf: String.valueOf(72);.

Double to String
(the class Double, not the primitive) Double.toString(3.1415);.

Integer to String
(the class Integer, not the primitive) Integer.toString(72);.

String concatenation will convert automatically, so
String s = "Temperature is " + 72 + " degrees."
will result in the string

"Temperature is 72 degrees."

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 6

Glossary

annotation
An added command to Java source code that modifies or adds information
(such as tagging a function as an event handler).

argument
A value you pass to a function for it to use.

array
A sequential list of values, indexed with an integer offset.

Array
Java class that implements an array.

binary file
A file that contains binary numbers and is not human-readable.

block
A list of code statements within a pair of braces, { and }.

boolean
A logical value that can be equal to only true or false.

cast
To change the interpretation of a value, usually from one object to a par-
ticular parent’s type.

class
A recipe that tells the compiler how to make an object: what data and
functions it should contain.

client
A piece of software that you run, usually with a graphical interface. It
connects to a server.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 6. Glossary © 248

command line
The terminal window where you can type in commands.

compile
To take a text file of human-readable language instructions and convert
it into something the computer can run (usually a binary format). javac is
the Java compiler.

constructor
A function in a class definition that is called when creating a new object.
You can use this to set the object’s variables and such.

current directory
In a shell, the directory that’s current (ha, a tautology!)

deploy
To install a resource into a server environment.

DNS
Domain Name Service, the global system that translates a domain name
like example.com to an IP address like 93.184.216.119.

double
A big floating-point number.

environment variable
Settings used by the shell and application programs.

event
An object that represents some real-world action, such as a mouse click.

exception
An error that interrupts the current function and starts running the top-
most enclosing catch, or aborts the program if there isn’t one.

executable
A file that the computer can run, usually a binary file with low-level
machine instructions, but sometimes a text script run by a shell.

file system
The collection and organization of files and folders (directories) on the
computer.

final
A Java keyword indicating that this variable can’t be changed.

float
A not-so-big floating-point number.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 6. Glossary ® 249

floating point
A number with a decimal point and fractional part, like 1.25.

function
Alist of Java instructions, declared with a return type, a name, parameters
it takes, and a block of code between { and }.

global variable
A variable that can be used by multiple functions and/or multiple classes.

hash
A list of objects indexed by any kind of object (but usually by a string).

HashMap
Java class that implements a hash.

import
A Java keyword that lets you use a class from another package, such as
java.util.HashMap (which is the HashMap class in the java.util package).

inherit
To use something from a parent.

integer
A whole number with no decimal point and no fractions, like 7.

/o
Input/output: sending and receiving data from somewhere else, such as
a file or over the network.

iterator
An object that lets you retrieve one value at a time from some kind of
collection (like an ArrayList or HashMap).

jar
A Java Archive file that contains .class and configuration files.

keyword

A word defined by Java as part of the language. You can’t change keywords
or use their names as variables.

listener
A function that will be called when something interesting happens.

literal
A value you type in directly, like 123, true, or "Notch".

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 6. Glossary ® 250

localhost
The computer’s network name for itself.

local variable
A variable declared with a block of { and }; can be used only within that
block.

long
A really big whole number, with no decimal point.

map
See HashMap.

null
A variable that would normally point to an object but isn’t pointing to
anything is set to the special value null.

object
A collection of live variables and functions, built from a class recipe.

object-oriented
Software based on the theory of objects that combine variables and
functions into one pile of stuff.

package
A collection of Java classes that belong together.

parameter
A value in a function that has been passed in for it to use.

path
A list of directories that the computer will search to find a command or
other resource.

plugin
A compiled piece of code that's added to an already-compiled piece of
code.

port
An agreed-upon number that lets computers communicate over a network.
For example, the Web uses port 80, and Minecraft uses port 25565.

private
A Java keyword that restricts visibility to the current class.

public
A Java keyword that opens up visibility to all classes.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 6. Glossary ® 251

script
A text file containing shell commands (or another text language, like Ruby

or Python).

server
A piece of software that runs in the background, usually on another
machine, that can serve multiple client connections. Can also refer to the
remote machine.

shadow
A variable with the same name as another variable in its scope is said to
shadow it. Chaos may ensue.

shell
See command line.

source code
Java language statements that you've typed into a file.

static
A variable or function that is not in any particular object.

string
A bunch of human-readable characters held in a variable.

symbol
A bunch of human-readable characters that has special meaning to the
Java compiler as part of your program’s language.

task
A piece of code running in a thread, with a well-defined purpose.

text file
A file that contains human-readable text characters.

thread
One list of functions, executed in order by the computer. Threads can be
interrupted by other threads.
tick
An arbitrary unit of time. A Minecraft server tick is about 1/20 of a second.
variable

A named holder of data. Can be an immediate value, like 15, or can point
to an object, like a Player or a Cow.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 6. Glossary ® 252

void
Nothing. A function that is declared to return void won’t return any values,
and doesn’t need a return statement.

VPS
Virtual Private Server, a remote computer you can rent by the month or
by the amount of CPU and network traffic you use.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

APPENDIX 7

Common Imports

Here is a listing of all of the imported package and class names used in our
plugins. If you get an error that a symbol can’t be found, you may need to
import the full class name. For instance, to use a HashMap you’d need to import

java.util.HashMap,

mod.api.world.blocks.Block.

and to use a Block you'd need to

import net.canary-

You can always look up the full class name in the Java or Canary docs, but

here are the most common ones for your convenience.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

com.pragprog.ahmine.ez.EZPlugin;
util.ArraylList;
util.Collection;
util.HashMap;
util.Iterator;

util.List;

java.
java.
java.
java.
java.
java.
java.

net.
net.
net
net.
net.
net.
net.
net.
net.
net.
net.
net.
net.
net
net.
net.
net.

util.Map;

canarymod.
canarymod.

.canarymod.

canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.
canarymod.

.canarymod.

canarymod.
canarymod.
canarymod.

util.Stack;

BlockIterator;
Canary;
LineTracer;

api.
api.
api.
api.
api.
api.
api.
api.
api.
api.
api.
api.
api.
api.

DamageType;

entity.Entity;

entity.EntityType;

entity.living.
entity.living.
entity.living.
entity.living.
entity.living.
entity.living.

EntitylLiving;
animal.Bat;
animal.Cow;
animal.Squid;
humanoid.Player;
monster.Creeper;

factory.EntityFactory;
factory.PotionFactory;
inventory.ItemType;
potion.PotionEffect;
potion.PotionEffectType;

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Appendix 7. Common Imports ® 254

import net.canarymod.api.world.Chunk;

import net.canarymod.api.world.World;

import net.canarymod.api.world.blocks.Block;

import net.canarymod.api.world.blocks.BlockType;
import net.canarymod.api.world.blocks.Sign;

import net.canarymod.api.world.effects.Particle.Type;
import net.canarymod.api.world.effects.Particle;
import net.canarymod.api.world.effects.SoundEffect;
import net.canarymod.api.world.position.Location;
import net.canarymod.api.world.position.Vector3D;
import net.canarymod.chat.MessageReceiver;

import net.canarymod.commandsys.*;

import net.canarymod.database.Column.DataType;
import net.canarymod.database.Column;

import net.canarymod.database.DataAccess;

import net.canarymod.database.Database;

import net.canarymod.database.exceptions.*;

import net.canarymod.hook.HookHandler;

import net.canarymod.hook.entity.DamageHook;

import net.canarymod.hook.entity.ProjectileHitHook;
import net.canarymod.hook.player.ItemUseHook;
import net.canarymod.hook.player.TeleportHook;
import net.canarymod.hook.world.ChunkCreatedHook;
import net.canarymod.hook.world.ChunkLoadedHook;
import net.canarymod.hook.world.ChunkUnloadHook;
import net.canarymod.logger.Logman;

import net.canarymod.plugin.Plugin;

import net.canarymod.plugin.PluginListener;

import net.canarymod.tasks.ServerTask;

import net.visualillusionsent.utils.PropertiesFile;

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

Bibliography

[Swi08] Travis Swicegood. Pragmatic Version Control Using Git. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2008.

[SwilO] Travis Swicegood. Pragmatic Guide to Git. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, 2010.

http://pragprog.com/titles/ahmine2/errata/add
http://forums.pragprog.com/forums/ahmine2

SYMBOLS

. (dot), selecting object parts,
44
; (semicolon), terminating Ja-
va statement, 44
&& (ampersands, two), and
operator, 63, 242
< > (angle brackets), enclosing
types in declarations, 98,
243
* (asterisk)
multiplication operator,
49, 242
wildcard character, 24

\ (backslash), in paths, 17
{} (braces)

enclosing array or hash
values, 95
enclosing code blocks,
44, 58, 218, 243
[] (brackets), 43, 95

S (dollar sign), command
prompt, 2
. (dot)
current directory, 8, 13
selecting object parts, 72—
74
.. (dots, two), parent directory,
8, 11,13
== (equal signs, two), equal to
operator, 63, 242
! (exclamation point), not oper-
ator, 63, 242
!= (exclamation point, equal
sign), not equal to operator,
63, 242

< (left angle bracket), less
than operator, 63, 242

<= (left angle bracket, equal
sign), less than or equal to
operator, 63, 242
- (minus sign), subtraction
operator, 49, 242
— (minus signs, two), subtract
one operator, 50
() (parentheses)
enclosing function argu-
ments, 43
grouping operations, 242
% (percent sign)
command prompt, 2
remainder operator, 242
+ (plus sign)
addition operator, 49,
242
concatenating strings, 50

++ (plus signs, two), add one
operator, 50

"o

(quotes)
enclosing directories con-
taining spaces, 11
enclosing strings, 50
> (right angle bracket), greater
than operator, 63, 242
>= (right angle bracket, equal
sign), greater than or equal
to operator, 63, 242
; (semicolon), terminating Ja-
va statement, 213
/ (slash)
division operator, 49, 242
in paths, 17
preceding Minecraft com-
mands, 1, 39
root directory, 8

Index

/* */ (slash, asterisk), enclos-
ing comments, 43

// (slashes, two), preceding
comments, 43

~ (tilde), home directory, 10,
13

| | (vertical bars, two), or oper-
ator, 63, 242

A
abstraction, levels of, 70
add one operator (++), 50
addSynchronousTask function,
139-140
addition operator (+), 49, 242
ampersands, two (&&), and
operator, 63, 242
and operator (&&), 63, 242
angle brackets (< >), enclosing
types in declarations, 98,
243
annotations, 247
apt-get command, 238
archiver utility, see jar com-
mand
argument checking (built in),
113
arguments, 56, 58, 247
array, two-dimensional, 121
Array class, 94-98, 247
accessing elements of,
95-96
assigning values to, 95
declaring, 95
iterating through, 96
length of, 95
ArrayAddMoreBlocks plugin exam-
ple, 101-102

ArrayList class, 98-102
accessing elements of,
100
assigning values to, 100
clearing elements of, 101
declaring, 98
size of, 100
ArrayOfBlocks plugin example,
96-98
arrays, 94, 241, 247, see al-
so specific array types

associative array, see HashMap
class

asterisk (*)
multiplication operator,
49, 242
wildcard character, 24

author: item, configuration file,
36

authorized_keys file, 234

autocomplete, on command
line, 8

B

BackCmd plugin example, 128-
133, 158-166

backslash (\), in paths, 17
bash shell, see shell
.bash_profile file, 21
binary files, 31, 247
Bitbucket, 181, 183
Block, setting type of, 125
block structured program-
ming language, 89
Blocklterator object, 84-86

blocks (Minecraft), 67
array of, 96
changing, 118
finding, 84-86
location of, 118
modifying, 117-122
type of, 118
blocks (code), see code blocks

Boolean conditions, see com-
parison operators
boolean value, 241, 247
braces ({})
enclosing array or hash
values, 95
enclosing code blocks,
44, 58, 213, 243
brackets ([]), 43, 95
build.sh file, 36-37

BuildAHouse plugin example,
46-50

BusyBox application, 4
C

CakeTower plugin example, 92—
94
Canary.inf file, 35-36, 80
CanaryMod project, 23, 219,
see also Minecraft server
classes, documentation
for, 217-218
CanaryMod. jar file, 24, see al-
so Minecraft server
case sensitivity in Java, 43
cast, 81, 115, 244, 247
cat command, 12-13
catch keyword, 155
c¢d command, 3, 5-9, 13
cfg file, 146-149
characters, see strings
chat function, 53
chmod command, 13, 25, 234
class file-name suffix, 22
class files, 18-19, 31
classes, 247, see also objects;
specific classes
declaring, 35, 243
defining, 70-74
designing, 190-193
documentation for, 217-
218
importing, 35, 72-73,
212, 243
imports, common, 253
multiple, in separate files,
137-138
public, 35, 214, 243
purpose of, 138
vs. objects, 137
CLASSPATH environment vari-
able, 22
client, 247, see also Minecraft
graphical client
client-server application, xii—
xiii
cloud server, 229-230
domain name for, 240
IP address for, 240
Java for, installing, 238
killing Java processes for,
239
Linux distributions for,
230-232
logging out of, 235

Index ¢ 258

packages for, installing,
237-238

remote access to, 232—
237

root access for, 235-237

running Minecraft remote-
ly, 239-240

services for, 230

SSH keys for, 233-235

VPS for, 230

cloud, backing up to, 180-
182

cmd.exe application, 2, 4
code, see source code

code blocks, 89-90, 213,
243, 247

code examples
ArrayAddMoreBlocks plugin,
101-102
ArrayOfBlocks plugin, 96-98
BackCmd plugin, 128-133,
158-166
BuildAHouse plugin, 46-50
CakeTower plugin, 92-94
code directory for, 5
CowShooter plugin, 140-
143
FlyingCreeper plugin, 125-
126
font conventions for, xiv
HelloWorld plugin, 5-7, 32—
37
LavaVision plugin, 84-86
LocationSnapshot plugin,
154-157
NameCow plugin, 67-68
NamedSigns plugin, 109-
115
PlayerStuff plugin, 75-77
Simple plugin, 50-54
SkyCmd plugin, 80-84
SquidBombConfig plugin,
149-151
Stuck plugin, 118-122
website for, xiv
@Column annotation, 152
column, database, 152
@Command annotation, 81-83

command argument parsing,
113

command line, 1-3, 248
autocomplete on, 8
for cloud server, 232
command prompt for, 2,
235

copy and paste on, 9
QuickEdit mode for Win-
dows, 9
commands (Git), 184

commands (Java), see java
command; javac command

commands (Minecraft), 1, 39
as annotations, 83
creating, 81-84, 194-195
not found, 216

commands (shell), 13, see al-
so specific commands

commands: section, Java anno-
tation, 83

comments, 43

comparison operators, 62—
63, 242

compile, 248
compiler, see javac command

configuration data, storing,
145-149

configuration files
Canary.inf file, 35-36, 80
.cfg file, 146-149
constructor, 139, 153, 248
conventions used in this
book, xiv
coordinates, see Location object
copy and paste, on command
line, 9
CowShooter plugin example,
140-143
cp command, 10, 13, 24
CRC cards, 190
creative mode (Minecraft), 39,
142
current directory, 5, 248

D

data types, 241
conversions between, 46,
244-245
numbers, 48-50
strings, 50
for variables, 44-46
data, storing
configuration data, 145-
149
game data, 145, 151-154
DataAccess objects, 152

database, XML vs SQL for-
mat, 158

database functions, 155, 157
decision statements, 61, 243

default directory, see home
directory

deploy, 248
Desktop directory, 3, 11-12

desktop server, 221
LogMeln tool for, 221-
223
manual setup for, 223—
227
Minecraft port for, 221

DHCP reservation, 227
dictionary, see HashMap class

directories, see also paths
changing, 3
creating, 9-10
current directory, 5, 248
Desktop directory, 3, 11—
12
home directory, 3, 5, 10
listing, 3
listing files in, 7
moving between, 5-9
parent directory, 8, 11,
13
for plugins, 32
root directory, 8
spaces in, 11
division operator (/), 49, 242
DNS (Domain Name Service),
224, 248
dollar sign ($), command
prompt, 2
domain name, for cloud serv-
er, 240
dot (.)
current directory, 8, 13
selecting object parts,
44, 72-74
dots, two (..), parent directory,
8,11, 13
doubles, 48, 248
dynamic DNS registration,
224
dynamic IP address, 224

E

echo command, 13
editor, 15-17
creating files, 17
Sublime Text editor, 15
syntax highlighting in, 16
effects
particle, 85
potion, 125
sound, 85

Index ® 259

enable function, 127, 147

End-User License Agreement
(EULA), 25
Ender Pearl, 124
entities, 67
attacking, 123
finding, 84-86
health of, 123
location of, 123
modifying, 123-124
potion effects for, 125
riders for, 125
setting fire to, 123
spawning, 123-126
teleporting, 123
entry points, for functions, 56
environment variables, 248
CLASSPATH environment
variable, 22
PATH environment vari-
able, 20-21
PS1 environment variable,
235
equal signs, two (==), equal to
operator, 63, 242
equal to operator (==), 63, 242
errors, 211
building plugins, 37
exceptions, catching,
155-156
java command, 22
Java commands not
found, 20-21
javac command, 22, 211-
215
line numbers of, 22, 211
Minecraft command not
found, 216
permission denied for
running server, 25
plugin not loading, 216
server, 216
unquoted directories
containing spaces, 11
version mismatch, 27
events, 126, 201-208, 248
enabling listening of, 127
implementing, 127, 130
importing, 127
list of, 127
listener for, 127, 130-132

examples, see code examples
exceptions, 155-156, 248

exclamation point (!), not oper-
ator, 63, 242

exclamation point, equal sign
(=), not equal to operator,
63, 242

executables, 248
extends keyword, 79
EZPlugin library, 40
EZPlugin parent class, 79

F

file system, 5, 248

files
binary files, 31, 247
class files, 19, 31
configuration files, 35—

36, 80, 146-149

copying, 10, 13, 24
creating, 17
executables, 248
jar files, 31, 249
listing, 3, 7
text files, 12, 251
zip files, xiv

final keyword, 248

final modifier, 244

firewall, opening ports on,
224-226

floating points, 48, 249

floats, 48, 248

FlyingCreeper plugin example,
125-126

folders, see directories

for statement, 60, 96, 243

for-each statement, 100-102,
243

functions, 249

arguments for, 56, 58,
247

calling, 56, 59, 244

constructor, 139

creating, 54-58, 195-201

declaring, 243

designing, 190-193

entry points for, 56

listeners, 249

name of, 58

parameters for, 56, 250

public, 57, 243

scope of parameters in,
90

static, 57, 251

super, 140

tasks, 138-140

void, 57, 252

G
game data, storing, 145, 151
154
in SQL database, 151
garbage collection, 109
getConfig function, 147
getCurrentLocation function, 128
getDestination function, 128
getEntityLivingList function, 81,
151
getHealth function, 123
getinstance function, 153
getlteminHand function, 123
getlocation function, 118, 123
getPlayer function, 72, 128
getServer function, 72
getTileEntity function, 115
getType function, 118
Git, 169-176
adding files to remember,
170
backing up to the cloud,
180-182
Bash shell for, 170
branches in, 177-180
commands, list of, 184
committing changes, 171
configuring, 170
ignoring files, 172
installing, 169
log for, 171
repository for, 170
status of, 172
undoing changes, 173-
176
.git directory, 170
GitHub
backing up to the cloud,
181-182
sharing code, 183-184
.gitignore file, 172
global variables, 90-92, 249
graphical client, see Minecraft
graphical client
greater than operator (>), 63,
242
greater than or equal to opera-
tor (>=), 63, 242
groupmod command, 133

Index ® 260

H
hash, 249

HashMap class, 105-108, 249
accessing elements of,
105
assigning values to, 105
creating, 107, 112

heap, 109

HelloWorld plugin example
building, 36-37
configuration file, 35-36
directory structure, 5-7,

32-33
source code, 33-35
home directory, 3, 5, 10

@HookHandler annotation, 127,
130

hooks for events, 126

I

1/0 (input/output), 249
id_rsa.pub file, 234

if statement, 61, 243
ifconfig command, 227

import statement, 35, 72-73,
212, 243, 249, 253

inherit, 249
input/output, seel/O
instanceof keyword, 81
integers, 48, 249-250
inventory, 142

IP address
for cloud server, 240
external, 224
internal, 227

ipconfig command, 227
isOnGround function, 143
items, 67

iterators, 249

J
jar (Java Archive) files, 31,
249
jar command, 18
java command, 13, 18-22, 31
Java Development Kit,
see JDK
Jjava file-name suffix, 7, 22
Java language, xi, 243-244
as block structured, 89
case sensitivity of, 43
comments, 43

comparison operators,
242
data type conversions,
244-245
data types, 241
math operators, 242
visibility modifiers, 244
javac command, 13, 18-22,
31, 211-215

JDK (Java Development Kit)
commands not found for,
20-21
installing, 18-19, 238
version of, 18

K

key commands, 39

keywords, 249, see also spe-
cific keywords

kill function, 123

L
latest.log file, 216

LavaVision plugin example, 84—
86

Leather material, 142

left angle bracket (<), less
than operator, 63, 242

left angle bracket, equal sign
(<=), less than or equal to
operator, 63, 242

less than operator (<), 63, 242
less than or equal to operator
(<=), 63, 242
levels of abstraction, 70
line endings, 170
line of sight, 84
LineTracer object, 84-86
Linux
command line, using, 2
command prompt, 2
opening firewall, 226
remote, for cloud server,
230-232

listeners, 249
creating, 127, 130-132

literals, 50, 241, 249
load function, 157

local variables, 89, 250
localhost, 250

Location object, 81-82

LocationSnapshot plugin example,
154-157

log messages, 91

LogMeln tool, 221-223

loop statements, 60, 64, 100—
102, 243

Is command, 3, 7, 13

M
Mac OS X
command line, using, 2
command prompt, 2
internal IP address,
checking, 227
opening firewall, 225
main-class: item, configuration
file, 36
makeExplosion function, 132
map, see HashMap class
math operators, 49-50, 242
Math.random function, 83
MessageReceiver object, 81
method, 139

Minecraft
commands, 1, 39, 81-84
key commands and
mouse clicks, 39
modes in, changing, 39
versions of, 27
Minecraft graphical client
connecting to server, 26—
29
installing, 23
Minecraft plugins, see al-
so code examples
building, 31-33, 36-37,
193-209
configuration file, 35-36
designing, 187-193
directory structure, 32—
33, 193
not loading, 216
recognition of, in
Minecraft, 79-80
running, 38
source code, 33-35
Minecraft server
errors from, 216
installing, 23-24
running, 24-26
stopping, 26
stopping and restarting,
38
minus sign (-), subtraction
operator, 49, 242
minus signs, two (-), subtract
one operator, 50

mkdir command, 9-10, 13

Index ® 261

mkplugin.sh file, 51, 193
multiple threads, 135-137

multiplication operator (*),
49, 242

mv command, 13, 24

N

name: item, configuration file,
36

NameCow plugin example, 67—

NamedSigns plugin example,
109-115

new keyword, 74, 102, 107,
109

not equal to operator (!=), 63,
242

not operator (!), 63, 242
null value, 250

numbers, 48-50, 241
floating points, 48, 249
integers, 48, 249-250
math operators for, 49—

50, 242

(0)
object-oriented programming,
67, 250
objects, 67-70, 250, see al-
so classes; specific objects
creating, 74, 244
parts of, 72-74
online resources, xiv
BusyBox application, 4
Canary classes documen-
tation, 217-218
CanaryMod project, 24,
219
dynamic DNS registra-
tion, 224
Git, 169
IP address, checking, 224
Minecraft installer, 23
Oracle Java classes docu-
mentation, 218
port accessibility, check-
ing, 226
for this book, 219
open-ssh package, 238
operator privileges
(Minecraft), 25, 142
operators
comparison, 62-63, 242
math, 49-50, 242

or operator (| |), 63, 242

Oracle Java classes, documen-
tation for, 218

P

package statement, 35, 243
packages, 250
declaring, 243
importing, 73
imports, common, 253
installing on cloud server,
237-238
parameters, 56, 90, 250
parent directory, 8, 11, 13
parentheses (())
enclosing function argu-
ments, 43
grouping operations, 242
parsing command arguments,
113
Particle, spawning, 124
particle effect, 85
PATH environment variable,
20-21
paths, 20-21, 250
percent sign (%)
command prompt, 2
remainder operator, 242
permissions
checking, 26, 133
setting, 133-134
visitor, 26
permissions annotation, 133
pitch, 53
playSound function, 53
Player object, 71-77
checking validity of, 81
playermod command, 133
PlayerStuff plugin example, 75—
77
Plugin object, 79
plugins, 31, 250, see al-
so Minecraft plugins
plus sign (+)
addition operator, 49,
242
concatenating strings, 50
plus signs, two (++), add one
operator, 50
ports, 222, 250
checking accessibility to,
226
forwarding, 226-227

Minecraft, 221
setting priority of, 227
POSIX-compatible shell, 4
potion effect, 125
primary key, 152
private keyword, 108-109,
244, 250
.profile file, 21
programming languages, xi,
see also Java language

prompt for command line, 2,
235

PropertiesFile object, 147
protected modifier, 244

PS1 environment variable, 235
pseudo-code, 56

public keyword, 108, 244, 250
classes, 35, 214, 243
functions, 57, 243

pwd command, 5, 11, 13

Q

QoS (Quality of Service), 227
QuickEdit mode, 9

quotes (" ")
enclosing directories con-
taining spaces, 11
enclosing strings, 50

R
random numbers, 83
remainder operator (%), 242

remote access to cloud server,
232-237

resources, see online re-
sources

return keyword, 58
riders, 125

right angle bracket (>), greater
than operator, 63, 242

right angle bracket, equal
sign (>=), greater than or
equal to operator, 63, 242

rightClick function, 118
rm command, 13
root access, 235-237
root directory, 8

runtime application, see java
command

S

save function, 148
scheduling tasks, 139-140

Index ® 262

scp command, 232
screen command, 239
scripts, 251
build.sh file, 36-37
mkplugin.sh file, 51, 193
search path, see PATH environ-
ment variable
secure shell (SSH), 232
security
backing up to the cloud,
180-182
permissions, 26, 133
sharing code, 183-184
tracking code changes,
169-176
semicolon (;), terminating Ja-
va statement, 44, 213
server, xii—xiii, 251, see al-
so client-server application;
cloud server; desktop serv-
er; Minecraft server
server location, 36
Server object, 72
ServerTask class, 140
setAttackTarget function, 123
setBlockAt function, 125
setCanceled function, 128
setFireTicks function, 123
setHealth function, 123
setRider function, 123
setTextOnLine function, 115
sh file-name suffix, 7
shadowing, 93-94, 251
shell, 2, 232, 251, see al-
so command line
with Git, 170
shell scripts, see scripts
Sign object, 114
Simple plugin example, 50-54
SkyCmd plugin example, 80-84
slash (/)
division operator, 49, 242
in paths, 17
preceding Minecraft com-
mands, 1, 39
root directory, 8
slash, asterisk (/* */), enclos-
ing comments, 43
slashes, two (//), preceding
comments, 43
sound effect, 53, 85

source code, xiv, 31, 251, see
also code examples; Java
language
sharing, 183-184
style practices for, 183
tracking changes to, 169-
176

spaces, in directory names,
11

spawn function, 123, 125

spawnEntityLiving function, 83,
124

spawnParticle function, 124
split function, 162

SquidBombConfig plugin example,
149-151

SSH (secure shell), 232

ssh command, 232

.ssh directory, 233

SSH keys, 233-235
ssh-keygen command, 233
sshd command, 232

stack, 109, 131

start up errors, server, 26
start_minecraft script, 24, 239
static IP address, 224

static keyword, 57, 91, 244,
251

strings, 50, 241, 251
concatenating, 50, 245
Stuck plugin example, 118-122
Sublime Text editor, 15
subtract one operator (-), 50

subtraction operator (-), 49,
242

sudo command, 235-237
super function, 140
symbols, 251
synchronous tasks, 137
syntax highlighting, 16

T
table, database, 152
tasks, 251
creating, 138-139
scheduling to run later,
139-140
synchronous, 137
teleport, preventing, 128
teleportTo function, 74, 123
text, see strings
text commands, see com-
mands
text editor, see editor
text files, 251
configuration files as, 146
Java files as, 18, 31, 43
scripts as, 251
viewing contents of, 12
threads, 135-137, 251
ticks, 251
tilde (~), home directory, 10,
13
time, units of, see ticks
try keyword, 155
txt file-name suffix, 12
types, incompatible, 215

u
unzip command, xiv
update function, 155

Vv

variables, 44-46, 89-90, 251
assigning, 44-46, 243
copying, 102
creating, 44
declaring, 212, 243
environment variables,

248

global, 90-92, 249
local, 89, 250
scope of, 89

Index ® 263

shadow of, 93-94, 251
static, 91, 251

version: item, configuration file,
36

vertical bars, two (| |), or oper-
ator, 63, 242

Virtual Private Server,
see VPS

visibility modifiers, 244

visitor permissions, 26

void keyword, 57, 252

volume, 53

VPS (Virtual Private Server),
230, 252

W

website resources, see online
resources
while statement, 64, 243
whois command, 240
Windows
BusyBox application, 4
command line, using, 2,
4
command prompt, 2
internal IP address,
checking, 227
opening firewall, 225
paths, syntax for, 17
QuickEdit mode for com-
mand line, 9
working directory, see current
directory

Y

yum command, 238

Z

zip files, xiv

Other Books by Andy Hunt

Time to rewire your brain for better thinking and learning, and then see what it takes to be

a modern software developer.

Pragmatic Thinking and Learning

Software development happens in your head. Not in
an editor, IDE, or design tool. You're well educated on
how to work with software and hardware, but what
about wetware—our own brains? Learning new skills
and new technology is critical to your career, and it's
all in your head.

In this book by Andy Hunt, you’ll learn how our brains
are wired, and how to take advantage of your brain’s

architecture. You'll learn new tricks and tips to learn
more, faster, and retain more of what you learn.

You need a pragmatic approach to thinking and
learning. You need to Refactor Your Wetware.

Printed in full color.

Andy Hunt
(252 pages) ISBN: 9781934356050. $34.95
http://pragprog.com/book/ahpt!

Practices of an Agile Developer

Want to be a better developer? This book collects the
personal habits, ideas, and approaches of successful
agile software developers and presents them in a series
of short, easy-to-digest tips.

You’'ll learn how to improve your software development
process, see what real agile practices feel like, avoid
the common temptations that kill projects, and keep
agile practices in balance.

Venkat Subramaniam and Andy Hunt
(208 pages) ISBN: 9780974514086. $29.95
http://pragprog.com/book/pad

T

Pragmatic
Thinking
Learning

Refactor
Your Wetware

i

[
|

s

-
-
N

The
Pragmatic
b gmmmers

Prac’[iceis1 of an
e
eveloper

47

Venkat Subramaniam
Andy Hunt

http://pragprog.com/book/ahptl
http://pragprog.com/book/pad

JavaScript Games and Sound

Build 3D JavaScript games, and see how to add live sound to your apps.

3D Game Programming for Kids

You know what’s even better than playing games? PR s

Cr.eatlng y01.1r own. Even if you're an absolute beglnn.er, 3D Game Programming
this book will teach you how to make your own online for Kids PR
games with interactive examples. You'll learn program- 0 1‘1{‘6;’}:3‘::’2211(11;
ming using nothing more than a browser, and see cool,

3D results as you type. You'll learn real-world program-
ming skills in a real programming language: Java-
Script, the language of the web. You'll be amazed at

what you can do as you build interactive worlds and AR L

fun games. Appropriate for ages 10-99! ==
Printed in full color. Chris Strom
Chris Strom :

(250 pages) ISBN: 9781937785444. $36
http://pragprog.com/book/csjava

Programming Sound with Pure Data

Sound gives your native, web, or mobile apps that extra G —
dimension, and it’s essential for games. Rather than
using canfled samples from a sample library, learn DRe ramming SO
how to build sounds from the ground up and produce Wl%h Pure Data fe

them for web projects using the Pure Data program- Make Your Apps Come Alive
with Dynamic Audio

7
ming language. Even better, you'll be able to integrate ¢
dynamic sound environments into your native apps or | | H“”
games—sound that reacts to the app, instead of ‘\M‘H“ HHIW
sounding the same every time. Start your journey as U M‘WWI\U
a sound designer, and get the power to craft the sound ‘;
e
Tony Hillerson Towdillerson
(196 pages) ISBN: 9781937785666. $S36

http://pragprog.com/book/thsound

you put into your digital experiences.

http://pragprog.com/book/csjava
http://pragprog.com/book/thsound

The Joy of Math and Health

Rediscover the joy and fascinating weirdness of pure mathematics, and see how to stay

healthy as a programmer.

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The Healthy Programmer

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

Good Math

A Geek's Guide to the Beauty of
Numbers, Logic. and Computation

%..J e %
,\x///_ i 4
é: B: vy

Mark C. Chu-Carroll
Edited by John Osborn

P omers

The
Healthy
Programmer

Get Fit, Feel Better,
and Keep Coding

Joe Kutner

Foreword by Dr. Ed Wallitt,
physician and software developer
Edited by Brian P. Hogan

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp

Learn Hardware, Learn Ruby!

Get into the DIY hardware spirit with the Raspberry Pi, or learn to program using Ruby, the

language of Ruby on Rails web applications.

Raspberry Pi: A Quick-Start Guide (2nd edition)

The Raspberry Pi is one of the most successful open
source hardware projects ever. For less than $40, you
get a full-blown PC, a multimedia center, and a web
server—and this book gives you everything you need
to get started. You'll learn the basics, progress to con-
trolling the Pi, and then build your own electronics
projects. This new edition is revised and updated with
two new chapters on adding digital and analog sensors,
and creating videos and a burglar alarm with the Pi
camera. Printed in full color.

Maik Schmidt
(176 pages) ISBN: 9781937785802. $22
http://pragprog.com/book/msraspi2

Learn to Program (2nd edition)

For this new edition of the best-selling Learn to Pro-
gram, Chris Pine has taken a good thing and made it
even better. First, he used the feedback from hundreds
of reader e-mails to update the content and make it
even clearer. Second, he updated the examples in the
book to use the latest stable version of Ruby, and also
to use code that looks more like real-world Ruby code,
so that people who have just learned to program will
be more familiar with common Ruby techniques.

Not only does the Second Edition now include answers
to all of the exercises, it includes them twice. First
you'll find the “how you could do it” answers, using
the techniques you've learned up to that point in the
book. Next you'll see “how Chris Pine would do it”:
answers using more advanced Ruby techniques, to
whet your appetite as well as providing sort of a
“Rosetta Stone” for more elegant solutions.

This fourth printing of Learn to Program, 2nd edition
has been updated for Ruby 2.0.

Chris Pine
(194 pages) ISBN: 9781934356364. $24.95
http://pragprog.com/book/Itp2

pberry
A Quick-Start Guide

Second Edition

Maik Schmidt

Edted by Jacquelyn Carter

4
The 44
ic &%,
P g amers %
>

L 2]
Chris Pine

http://pragprog.com/book/msraspi2
http://pragprog.com/book/ltp2

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/ahmine2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: http:/pragprog.com/book/ahmine2

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764

http://pragprog.com/book/ahmine2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/ahmine2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Start Here
	Who This Book Is For
	Getting Started
	Swimming in the Deep End
	Getting Help
	Conventions

	1. Command Your Computer
	Use the Command Line
	Move Around in File Directories
	Start at the Desktop
	Common Commands
	Next Up

	2. Add an Editor and Java
	Install an Editor to Write Code
	Install the Java Programming Language
	If the Java Command Is Not Found
	Other Reasons It Might Not Work
	Install the Minecraft Client and Server
	Next Up

	3. Build and Install a Plugin
	Plugin: HelloWorld
	Configure with Canary.inf
	Build and Install with build.sh
	Using EZPlugin
	Next Up

	4. Plugins Have Variables, Functions, and Keywords
	Keep Track of Data with Variables
	Plugin: BuildAHouse
	Plugin: Simple
	Organize Instructions into Functions
	Use a for Loop to Repeat Code
	Use an if Statement to Make Decisions
	Compare Stuff with Boolean Conditions
	Use a while Loop to Repeat Based on a Condition
	Next Up

	5. Plugins Have Objects
	Everything in Minecraft Is an Object
	Why Bother Using Objects?
	Combine Data and Instructions into Objects
	Plugin: PlayerStuff
	Next Up

	6. Add a Chat Command, Locations, and Targets
	How Does Minecraft Know About Your Plugin?
	Plugin: SkyCmd
	Handle Chat Commands
	Use Minecraft Coordinates
	Find Nearby Blocks or Entities
	Plugin: LavaVision
	Next Up

	7. Use Piles of Variables: Arrays
	Variables and Objects Live in Blocks
	Plugin: CakeTower
	Use a Java Array
	Plugin: ArrayOfBlocks
	Use a Java ArrayList
	Plugin: ArrayAddMoreBlocks
	Next Up

	8. Use Piles of Variables: HashMap
	Use a Java HashMap
	Keep Things Private or Make Them Public
	Plugin: NamedSigns
	Next Up

	9. Modify, Spawn, and Listen in Minecraft
	Modify Blocks
	Plugin: Stuck
	Modify Entities
	Spawn Entities
	Plugin: FlyingCreeper
	Listen for Events
	Plugin: BackCmd
	Check Permissions
	Next Up

	10. Schedule Tasks for Later
	What Happens When?
	Put Code in a Class by Itself
	Make a Runnable Task
	Schedule to Run Later
	Schedule to Run Once, or Keep Running
	Plugin: CowShooter
	Next Up

	11. Use Configuration Files and Store Game Data
	Use a Configuration File
	Plugin: SquidBombConfig
	Store Game Data in a Database
	Plugin: LocationSnapshot
	Plugin: BackCmd with Save
	Next Up

	12. Keep Your Code Safe
	Install Git
	Remember Changes
	An Easy Undo
	Visit Multiple Realities
	Back Up to the Cloud
	Share Code
	Next Up

	13. Design Your Own Plugin
	Have an Idea
	Gather Your Materials
	Lay Them Out
	Try Each Part
	Knit It All Together
	Just the Beginning

	A1. How to Read Error Messages
	Java-Compiler Error Messages
	Canary Server Error Messages

	A2. How to Read the Canary Documentation
	Canary JavaDoc Documentation
	Oracle JavaDoc Documentation
	The Wiki and Tutorials

	A3. How to Install a Desktop Server
	The Easy Way: LogMeIn
	The Harder Way: By Hand

	A4. How to Install a Cloud Server
	What Is the Cloud?
	Remote Operating Systems
	Remote Access
	Installing Packages
	Installing Java
	Running Remotely
	Domain Name
	What's Next

	A5. Cheat Sheets
	Java Language

	A6. Glossary
	A7. Common Imports
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

